Cardano, Geronimo, Offenbarung der Natur und natürlicher dingen auch mancherley subtiler würckungen

List of thumbnails

< >
551
551 (ccccxcv)
552
552 (ccccxcvi)
553
553 (ccccxcvij)
554
554 (ccccxcviij)
555
555 (ccccxcix)
556
556 (d)
557
557 (di)
558
558 (dij)
559
559 (diij)
560
560 (diiij)
< >
page |< < (dxij) of 997 > >|
Von mancherlei wunderbaren
    <echo version="1.0RC">
      <text xml:lang="de" type="free">
        <div type="section" level="1" n="68">
          <p>
            <s xml:space="preserve">
              <pb o="dxij" file="0568" n="568" rhead="Von mancherlei wunderbaren"/>
            der viereckechten geraden gantzen ſchooß gegẽ dem außgefürtẽ der ſchooſ-
              <lb/>
            ſen ſeiten am triangel vndereinãder/ iſt wie die ſchooß am vmbkerten eck/
              <lb/>
            ſo von beiden ſeitten begriffenn/ gegen der vmbkerten ſchooß der dritten
              <lb/>
            ſeitten/ vnnd der vmbkerten ſchoß vnderſcheid an den zwo erſten ſeittenn.
              <lb/>
            </s>
            <s xml:space="preserve">Zů einem exempel. </s>
            <s xml:space="preserve">Ich nimb den triangel G F B/ von welchem (als ich ge
              <lb/>
            ſagt hab) ich nit beſchleüß daß er ein Orthogonus oder gleiche eck habe/ ſon
              <lb/>
            der er ſeye wie er wölle/ ſo verr er auß der größeren circkel theil ſeye/ ſo ſag
              <lb/>
            ich daß die proportz der gantzen geraden viereckechten ſchooß/ gegenn dem
              <lb/>
            das auß der geraden ſchooß (damit ich ein exempel gebe) kommen B G in
              <lb/>
            die geſtrackte ſchooß G F/ iſt der ſchooß geleich des vmbkertẽ eck G/ ſo von
              <lb/>
            dem B G vnd G F begriffen/ gegen der vmbkerten ſchooßen vnderſcheid/
              <lb/>
            vnder wölchen vmbkerten ſchößen/ die ein des bogen F B ſchooß iſt der drit
              <lb/>
            ten ſeiten/ der ander aber ein bogen des vnderſcheid G B vnd G F der vor-
              <lb/>
            genden bogen.</s>
            <s xml:space="preserve"/>
          </p>
          <figure>
            <variables xml:space="preserve">c a b e f d</variables>
          </figure>
          <p>
            <s xml:space="preserve">Damit du aber verſtãdeſt was ein rechter vnd
              <lb/>
            vmbkerter Sinus oder ſchooß ſeye/ ſolt du wüſ-
              <lb/>
            ſen daß die geſtrackte linien ſo vnder dem bogenn
              <lb/>
            gezogen/ ein chorda oder ſeytten genennet wirt.
              <lb/>
            </s>
            <s xml:space="preserve">Dieweil aber diſe zůgleich von des circkels diame
              <lb/>
            ter abgetheylet wirt/ neñet man den halbẽ theil/
              <lb/>
            die geſtrackte ſchooß an dem ſelbigen halbenn bo-
              <lb/>
            gen. </s>
            <s xml:space="preserve">Geſtrackt aber/ welches ein theil des Diame
              <lb/>
            ter iſt/ ſo ſich von der rechtẽ ſchooß gegen dem bo-
              <lb/>
            gen ſtrecket/ vnd wirt ein ſchooß genẽnet/ gegen
              <lb/>
            des ſelbigen bogen halben theil. </s>
            <s xml:space="preserve">Nimb ein exem-
              <lb/>
            pel. </s>
            <s xml:space="preserve">in dem circkel A B C D/ heißet A E B ein ſeytten oder ſchnůr an dem
              <lb/>
            bogen A C B. </s>
            <s xml:space="preserve">deßhalben theile ſie D E C durch das kommend Centrum A
              <lb/>
            B durch geleiche theil in E/ welche auch in geleiche geſtrackte theil zerſchnei
              <lb/>
            den/ als Euclides anzeigt/ vnnd den bogen A B gleicher geſtalt durch ge-
              <lb/>
            leiche theil inn C. </s>
            <s xml:space="preserve">deßhalben wirt E B ein rechte ſchooß ſein B C/ vnnd E
              <lb/>
            C ein vmbkerte ſchooß des A C. </s>
            <s xml:space="preserve">Wann man nun den bogen A C B erken-
              <lb/>
            net/ haben wir auß dem Ptolemeo die ſchnůr A B. </s>
            <s xml:space="preserve">deßhalben auch E B/
              <lb/>
            dann es iſt das halb an A B.</s>
            <s xml:space="preserve"/>
          </p>
          <p>
            <s xml:space="preserve">Alſo wann man einen bogenn für ſtellet/ ſo iſt die rechte ſchooß der halb
              <lb/>
            theil an der ſchnůr oder ſeytten des zwifachen bogen. </s>
            <s xml:space="preserve">wann wir den ſelbigẽ
              <lb/>
            hand/ haben wir auch den vmbkerten bogen/ auß des Euclidis demonſtra
              <lb/>
            tionen vnd beweiſungen/ wañ man E B in ſich ſelbs zeücht/ vñ diſen qua-
              <lb/>
            draten vnd viereckechten theil auß dem quadraten F C zeücht/ vnnd des ü-
              <lb/>
            berblibenen/ wann man die ſeyten oder wurtzel nimmet/ welches die größe
              <lb/>
            F E iſt. </s>
            <s xml:space="preserve">wann man die ſelbigen abzeücht vonn F C/ ſo bleibt E C die vmb-
              <lb/>
            kerte ſchooß. </s>
            <s xml:space="preserve">wir haben auch von deßwegen/ vnnd weil es treffenlich nutz-
              <lb/>
            lich/ die tafel verordnet. </s>
            <s xml:space="preserve">Ich hab aber auß Ptolemei taflen die gerechten
              <lb/>
            ſchooß außgezogen/ vnnd die vmbkerten auß der gerechten oder geſtrack-
              <lb/>
            ten gemachet. </s>
            <s xml:space="preserve">Wann aber auch etliche minutien vnnd brüchzaal im bogen
              <lb/>
            an den tbeilen hangend/ ſo zeüch ihr zaal in der brüchzaal vnderſcheid/ ſo
              <lb/>
            wirt daß außgebracht der ſecunden zaal ſein/ welche man zů den ſchoßen
              <lb/>
            thůn ſoll.</s>
            <s xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>