Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
61
(25)
62
63
(26)
64
65
(27)
66
67
(22)
68
69
(29)
70
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div212
"
type
="
section
"
level
="
1
"
n
="
71
">
<
p
>
<
s
xml:id
="
echoid-s3281
"
xml:space
="
preserve
">
<
pb
file
="
0128
"
n
="
128
"
rhead
="
FED. COMMANDINI
"/>
ergo linea a g continenter in duas partes æquales diui-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0128-01
"
xlink:href
="
note-0128-01a
"
xml:space
="
preserve
">1. decimi</
note
>
ſa, relinquetur tãdem pars aliqua n g, quæ minor eritl m.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3282
"
xml:space
="
preserve
">Vtraque uero linearum a g, g b diuidatur in partes æqua-
<
lb
/>
les ipſi n g: </
s
>
<
s
xml:id
="
echoid-s3283
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3284
"
xml:space
="
preserve
">per puncta diuiſionum plana oppoſitis pla-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0128-02
"
xlink:href
="
note-0128-02a
"
xml:space
="
preserve
">5 huius</
note
>
nis æquidiſtantia ducantur. </
s
>
<
s
xml:id
="
echoid-s3285
"
xml:space
="
preserve
">erunt ſectiones figuræ æqua-
<
lb
/>
les, ac ſimiles ipſis a c e, b d f: </
s
>
<
s
xml:id
="
echoid-s3286
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3287
"
xml:space
="
preserve
">totum priſma diuiſum erit
<
lb
/>
in priſmata æqualia, & </
s
>
<
s
xml:id
="
echoid-s3288
"
xml:space
="
preserve
">ſimilia: </
s
>
<
s
xml:id
="
echoid-s3289
"
xml:space
="
preserve
">quæ cum inter ſe congruãt;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3290
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3291
"
xml:space
="
preserve
">grauitatis centra ſibi ipſis congruentia, reſpondentiaq; </
s
>
<
s
xml:id
="
echoid-s3292
"
xml:space
="
preserve
">
<
lb
/>
habebunt. </
s
>
<
s
xml:id
="
echoid-s3293
"
xml:space
="
preserve
">Itaq: </
s
>
<
s
xml:id
="
echoid-s3294
"
xml:space
="
preserve
">
<
lb
/>
<
figure
xlink:label
="
fig-0128-01
"
xlink:href
="
fig-0128-01a
"
number
="
84
">
<
image
file
="
0128-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0128-01
"/>
</
figure
>
ſunt magnitudi-
<
lb
/>
nes quædã æqua-
<
lb
/>
les ipſi n h, & </
s
>
<
s
xml:id
="
echoid-s3295
"
xml:space
="
preserve
">nu-
<
lb
/>
mero pares, qua-
<
lb
/>
rum centra gra-
<
lb
/>
uitatis in eadẽ re
<
lb
/>
cta linea conſti-
<
lb
/>
tuuntur: </
s
>
<
s
xml:id
="
echoid-s3296
"
xml:space
="
preserve
">duæ ue-
<
lb
/>
ro mediæ æqua-
<
lb
/>
les ſunt: </
s
>
<
s
xml:id
="
echoid-s3297
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3298
"
xml:space
="
preserve
">quæ ex
<
lb
/>
utraque parte i-
<
lb
/>
pſarum ſimili --
<
lb
/>
ter æquales: </
s
>
<
s
xml:id
="
echoid-s3299
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3300
"
xml:space
="
preserve
">æ-
<
lb
/>
quales rectæ li-
<
lb
/>
neæ, quæ inter
<
lb
/>
grauitatis centra
<
lb
/>
interiiciuntur.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3301
"
xml:space
="
preserve
">quare ex corolla-
<
lb
/>
rio quintæ pro-
<
lb
/>
poſitionis primi
<
lb
/>
libri Archimedis
<
lb
/>
de centro graui-
<
lb
/>
tatis planorum; </
s
>
<
s
xml:id
="
echoid-s3302
"
xml:space
="
preserve
">magnitudinis ex his omnibus compoſitæ
<
lb
/>
centrum grauitatis eſt in medio lineæ, quæ magnitudi-
<
lb
/>
num mediarum centra coniungit. </
s
>
<
s
xml:id
="
echoid-s3303
"
xml:space
="
preserve
">at qui non ita res </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>