Archimedes, Archimedis De iis qvae vehvntvr in aqva libri dvo

List of thumbnails

< >
81
81 (35)
82
82
83
83 (36)
84
84
85
85 (37)
86
86
87
87 (38)
88
88
89
89 (39)
90
90
< >
page |< < of 213 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div190" type="section" level="1" n="62">
          <p>
            <s xml:id="echoid-s2820" xml:space="preserve">
              <pb file="0114" n="114" rhead="FED. COMMANDINI"/>
            tes æqueponderantes ipſam diuidet.</s>
            <s xml:id="echoid-s2821" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s2822" xml:space="preserve">2 Priſmatis, cylindri, & </s>
            <s xml:id="echoid-s2823" xml:space="preserve">portionis cylindri axem
              <lb/>
            appello rectam lineam, quæ oppoſitorum plano-
              <lb/>
            rum centra grauitatis coniungit.</s>
            <s xml:id="echoid-s2824" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s2825" xml:space="preserve">3 Pyramidis, coni, & </s>
            <s xml:id="echoid-s2826" xml:space="preserve">portionis coni axem dico li
              <lb/>
            neam, quæ à uertice ad centrum grauitatis baſis
              <lb/>
            perducitur.</s>
            <s xml:id="echoid-s2827" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s2828" xml:space="preserve">4 Si pyramis, conus, portio coni, uel conoidis ſe-
              <lb/>
            cetur plano baſi æquidiſtante, pars, quæ eſt ad ba-
              <lb/>
            ſim, fruſtum pyramidis, coni, portionis coni, uel
              <lb/>
            conoidis dicetur; </s>
            <s xml:id="echoid-s2829" xml:space="preserve">quorum plana æquidiſtantia,
              <lb/>
            quæ opponuntur ſimilia ſunt, & </s>
            <s xml:id="echoid-s2830" xml:space="preserve">inæqualia: </s>
            <s xml:id="echoid-s2831" xml:space="preserve">axes
              <lb/>
            uero ſunt axium figurarum partes, quæ in ipſis
              <lb/>
            comprehenduntur.</s>
            <s xml:id="echoid-s2832" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div191" type="section" level="1" n="63">
          <head xml:id="echoid-head70" xml:space="preserve">PETITIONES.</head>
          <p>
            <s xml:id="echoid-s2833" xml:space="preserve">1 Solidarum figurarum ſimilium centra grauita-
              <lb/>
            tis ſimiliter ſunt poſita.</s>
            <s xml:id="echoid-s2834" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s2835" xml:space="preserve">2 Solidis figuris ſimilibus, & </s>
            <s xml:id="echoid-s2836" xml:space="preserve">æqualibus inter ſe
              <lb/>
            aptatis, centra quoque grauitatis ipſarum inter ſe
              <lb/>
            aptata erunt.</s>
            <s xml:id="echoid-s2837" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div192" type="section" level="1" n="64">
          <head xml:id="echoid-head71" xml:space="preserve">THEOREMA I. PROPOSITIO I.</head>
          <p>
            <s xml:id="echoid-s2838" xml:space="preserve">Omnis figuræ rectilineæ in circulo deſcriptæ,
              <lb/>
            quæ æqualibus lateribus, & </s>
            <s xml:id="echoid-s2839" xml:space="preserve">angulis </s>
          </p>
        </div>
      </text>
    </echo>