Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
81
(35)
82
83
(36)
84
85
(37)
86
87
(38)
88
89
(39)
90
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
(8)
of 213
>
>|
DE CENTRO GRAVIT. SOLID.
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
69
">
<
p
>
<
s
xml:space
="
preserve
">
<
pb
o
="
8
"
file
="
0127
"
n
="
127
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
æquidiſtant autem c g o, m n p. </
s
>
<
s
xml:space
="
preserve
">ergo parallelogrãma ſunt
<
lb
/>
o n, g m, & </
s
>
<
s
xml:space
="
preserve
">linea m n æqualis c g; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">n p ipſi g o. </
s
>
<
s
xml:space
="
preserve
">aptatis igi-
<
lb
/>
tur
<
emph
style
="
sc
">K</
emph
>
l m, a b c triãgulis, quæ æqualia & </
s
>
<
s
xml:space
="
preserve
">ſimilia sũt; </
s
>
<
s
xml:space
="
preserve
">linea m p
<
lb
/>
in c o, & </
s
>
<
s
xml:space
="
preserve
">punctum n in g cadet. </
s
>
<
s
xml:space
="
preserve
">Quòd cũ g ſit centrum gra-
<
lb
/>
uitatis trianguli a b c, & </
s
>
<
s
xml:space
="
preserve
">n trianguli
<
emph
style
="
sc
">K</
emph
>
l m grauitatis cen-
<
lb
/>
trum erit id, quod demonſtrandum relinquebatur. </
s
>
<
s
xml:space
="
preserve
">Simili
<
lb
/>
ratione idem contingere demonſtrabimus in aliis priſma-
<
lb
/>
tibus, ſiue quadrilatera, ſiue plurilatera habeant plana,
<
lb
/>
quæ opponuntur.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
2
">
<
note
position
="
left
"
xlink:label
="
note-0126-01
"
xlink:href
="
note-0126-01a
"
xml:space
="
preserve
">10. unde
<
lb
/>
cimi</
note
>
<
note
position
="
left
"
xlink:label
="
note-0126-02
"
xlink:href
="
note-0126-02a
"
xml:space
="
preserve
">10. unde-
<
lb
/>
cimi</
note
>
<
note
position
="
left
"
xlink:label
="
note-0126-03
"
xlink:href
="
note-0126-03a
"
xml:space
="
preserve
">4. ſexti</
note
>
<
figure
xlink:label
="
fig-0126-01
"
xlink:href
="
fig-0126-01a
">
<
image
file
="
0126-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0126-01
"/>
</
figure
>
<
note
position
="
left
"
xlink:label
="
note-0126-04
"
xlink:href
="
note-0126-04a
"
xml:space
="
preserve
">per 5. pe-
<
lb
/>
titionem
<
lb
/>
Archime
<
lb
/>
dis.</
note
>
</
div
>
</
div
>
<
div
type
="
section
"
level
="
1
"
n
="
70
">
<
head
xml:space
="
preserve
">COROLLARIVM.</
head
>
<
p
>
<
s
xml:space
="
preserve
">Exiam demonſtratis perſpicue apparet, cuius
<
lb
/>
Iibet priſmatis axem, parallelogrammorum lat eri
<
lb
/>
bus, quæ ab oppoſitis planis ducũtur æquidiſtare.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
type
="
section
"
level
="
1
"
n
="
71
">
<
head
xml:space
="
preserve
">THEOREMA VI. PROPOSITIO VI.</
head
>
<
p
>
<
s
xml:space
="
preserve
">Cuiuslibet priſmatis centrum grauitatis eſt in
<
lb
/>
plano, quod oppoſitis planis æquidiſtans, reli-
<
lb
/>
quorum planorum latera bifariam diuidit.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:space
="
preserve
">Sit priſma, in quo plana, quæ opponuntur ſint trian-
<
lb
/>
gula a c e, b d f: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">parallelogrammorum latera a b, c d,
<
lb
/>
e f bifariam diuidãtur in punctis g h _K_: </
s
>
<
s
xml:space
="
preserve
">per diuiſiones au-
<
lb
/>
tem planum ducatur; </
s
>
<
s
xml:space
="
preserve
">cuius ſectio figura g h _K_. </
s
>
<
s
xml:space
="
preserve
">eritlinea
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0127-01a
"
xlink:href
="
note-0127-01
"/>
g h æquidiſtans lineis a c, b d & </
s
>
<
s
xml:space
="
preserve
">h k ipſis c e, d f. </
s
>
<
s
xml:space
="
preserve
">quare ex
<
lb
/>
decimaquinta undecimi elementorum, planum illud pla
<
lb
/>
nis a c e, b d f æquidiſtabit, & </
s
>
<
s
xml:space
="
preserve
">ſaciet ſectionem figu-
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0127-02a
"
xlink:href
="
note-0127-02
"/>
ram ipſis æqualem, & </
s
>
<
s
xml:space
="
preserve
">ſimilem, ut proxime demonſtra-
<
lb
/>
uimus. </
s
>
<
s
xml:space
="
preserve
">Dico centrum grauitatis priſmatis eſſe in plano
<
lb
/>
g h
<
emph
style
="
sc
">K</
emph
>
. </
s
>
<
s
xml:space
="
preserve
">Si enim fieri poteſt, ſit eius centrum l: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">ducatur
<
lb
/>
l m uſque ad planum g h
<
emph
style
="
sc
">K</
emph
>
, quæ ipſi a b æquidiſtet.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>