Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
81
(35)
82
83
(36)
84
85
(37)
86
87
(38)
88
89
(39)
90
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
(13)
of 213
>
>|
DE CENTRO GRAVIT. SOLID.
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
type
="
section
"
level
="
1
"
n
="
73
">
<
p
>
<
s
xml:space
="
preserve
">
<
pb
o
="
13
"
file
="
0137
"
n
="
137
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
trianguli g h K, & </
s
>
<
s
xml:space
="
preserve
">ipſius ρ τ axis medium.</
s
>
<
s
xml:space
="
preserve
"/>
</
p
>
<
div
type
="
float
"
level
="
2
"
n
="
2
">
<
note
position
="
left
"
xlink:label
="
note-0132-02
"
xlink:href
="
note-0132-02a
"
xml:space
="
preserve
">5. huius</
note
>
<
figure
xlink:label
="
fig-0133-01
"
xlink:href
="
fig-0133-01a
">
<
image
file
="
0133-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0133-01
"/>
</
figure
>
<
note
position
="
right
"
xlink:label
="
note-0133-01
"
xlink:href
="
note-0133-01a
"
xml:space
="
preserve
">2. ſexti.</
note
>
<
note
position
="
right
"
xlink:label
="
note-0133-02
"
xlink:href
="
note-0133-02a
"
xml:space
="
preserve
">I1. quinti</
note
>
<
note
position
="
right
"
xlink:label
="
note-0133-03
"
xlink:href
="
note-0133-03a
"
xml:space
="
preserve
">2. ſexti.</
note
>
<
note
position
="
left
"
xlink:label
="
note-0134-01
"
xlink:href
="
note-0134-01a
"
xml:space
="
preserve
">19. ſexti</
note
>
<
figure
xlink:label
="
fig-0134-01
"
xlink:href
="
fig-0134-01a
">
<
image
file
="
0134-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0134-01
"/>
</
figure
>
<
note
position
="
left
"
xlink:label
="
note-0134-02
"
xlink:href
="
note-0134-02a
"
xml:space
="
preserve
">2. uel 121
<
lb
/>
quinti.</
note
>
<
note
position
="
right
"
xlink:label
="
note-0135-01
"
xlink:href
="
note-0135-01a
"
xml:space
="
preserve
">8. quinti.</
note
>
<
note
position
="
right
"
xlink:label
="
note-0135-02
"
xlink:href
="
note-0135-02a
"
xml:space
="
preserve
">28. unde
<
lb
/>
cimi</
note
>
<
note
position
="
right
"
xlink:label
="
note-0135-03
"
xlink:href
="
note-0135-03a
"
xml:space
="
preserve
">15. quinti</
note
>
<
note
position
="
right
"
xlink:label
="
note-0135-04
"
xlink:href
="
note-0135-04a
"
xml:space
="
preserve
">19. quinti
<
lb
/>
apud Cã
<
lb
/>
panum.</
note
>
<
figure
xlink:label
="
fig-0136-01
"
xlink:href
="
fig-0136-01a
">
<
image
file
="
0136-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0136-01
"/>
</
figure
>
</
div
>
<
p
>
<
s
xml:space
="
preserve
">Sit priſma a g, cuius oppoſita plana ſint quadrilatera
<
lb
/>
a b c d, e f g h: </
s
>
<
s
xml:space
="
preserve
">ſecenturq; </
s
>
<
s
xml:space
="
preserve
">a e, b f, c g, d h bifariam: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">per di-
<
lb
/>
uiſiones planum ducatur; </
s
>
<
s
xml:space
="
preserve
">quod ſectionem faciat quadrila-
<
lb
/>
terum _K_ l m n. </
s
>
<
s
xml:space
="
preserve
">Deinde iuncta a c per lineas a c, a e ducatur
<
lb
/>
planum ſecãs priſma, quod ipſum diuidet in duo priſmata
<
lb
/>
triangulares baſes habentia a b c e f g, a d c e h g. </
s
>
<
s
xml:space
="
preserve
">Sint autẽ
<
lb
/>
triangulorum a b c, e f g gra-
<
lb
/>
<
anchor
type
="
figure
"
xlink:label
="
fig-0137-01a
"
xlink:href
="
fig-0137-01
"/>
uitatis centra o p: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">triangu-
<
lb
/>
lorum a d c, e h g centra q r:
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">iunganturq; </
s
>
<
s
xml:space
="
preserve
">o p, q r; </
s
>
<
s
xml:space
="
preserve
">quæ pla-
<
lb
/>
no _k_ l m n occurrant in pun-
<
lb
/>
ctis s t. </
s
>
<
s
xml:space
="
preserve
">erit ex iis, quæ demon
<
lb
/>
ſtrauimus, punctum s grauita
<
lb
/>
tis centrum trianguli k l m; </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">
<
lb
/>
ipſius priſmatis a b c e f g: </
s
>
<
s
xml:space
="
preserve
">pun
<
lb
/>
ctum uero t centrum grauita
<
lb
/>
tis trianguli _K_ n m, & </
s
>
<
s
xml:space
="
preserve
">priſma-
<
lb
/>
tis a d c, e h g. </
s
>
<
s
xml:space
="
preserve
">iunctis igitur
<
lb
/>
o q, p r, s t, erit in linea o q cẽ
<
lb
/>
trum grauitatis quadrilateri
<
lb
/>
a b c d, quod ſit u: </
s
>
<
s
xml:space
="
preserve
">& </
s
>
<
s
xml:space
="
preserve
">in linea
<
lb
/>
p r cẽtrum quadrilateri e f g h
<
lb
/>
ſit autem x. </
s
>
<
s
xml:space
="
preserve
">deniqueiungatur
<
lb
/>
u x, quæ ſecet lineam ſ t in y. </
s
>
<
s
xml:space
="
preserve
">ſe
<
lb
/>
cabit enim cum ſint in eodem
<
lb
/>
<
anchor
type
="
note
"
xlink:label
="
note-0137-01a
"
xlink:href
="
note-0137-01
"/>
plano: </
s
>
<
s
xml:space
="
preserve
">atq; </
s
>
<
s
xml:space
="
preserve
">erit y grauitatis centrum quadril ateri _K_ lm n.
<
lb
/>
</
s
>
<
s
xml:space
="
preserve
">Dico idem punctum y centrum quoque gra uitatis eſſe to-
<
lb
/>
tius priſmatis. </
s
>
<
s
xml:space
="
preserve
">Quoniam enim quadri lateri k lm n graui-
<
lb
/>
tatis centrum eſt y: </
s
>
<
s
xml:space
="
preserve
">linea s y ad y t eandem proportionem
<
lb
/>
habebit, quam triangulum k n m ad triangulum k lm, ex 8
<
lb
/>
Archimedis de centro grauitatis planorum. </
s
>
<
s
xml:space
="
preserve
">Vtautem triã
<
lb
/>
gulum k n m ad ipſum k l m, hoc eſt ut triangulum a d c ad
<
lb
/>
triangulum a b c, æqualia enim ſunt, ita priſina a d c e h g</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>