Archimedes
,
Archimedis De iis qvae vehvntvr in aqva libri dvo
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
91
(40)
92
93
(41)
94
95
(42)
96
97
(43)
98
99
(44)
100
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 213
>
page
|<
<
(3)
of 213
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div192
"
type
="
section
"
level
="
1
"
n
="
64
">
<
p
>
<
s
xml:id
="
echoid-s2925
"
xml:space
="
preserve
">
<
pb
o
="
3
"
file
="
0117
"
n
="
117
"
rhead
="
DE CENTRO GRAVIT. SOLID.
"/>
cta b d in g puncto, ducatur c g; </
s
>
<
s
xml:id
="
echoid-s2926
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2927
"
xml:space
="
preserve
">protrahatur ad circuli
<
lb
/>
uſque circumferentiam; </
s
>
<
s
xml:id
="
echoid-s2928
"
xml:space
="
preserve
">quæ ſecet a e in h. </
s
>
<
s
xml:id
="
echoid-s2929
"
xml:space
="
preserve
">Similiter conclu
<
lb
/>
demus c g per centrum circuli tranſire: </
s
>
<
s
xml:id
="
echoid-s2930
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2931
"
xml:space
="
preserve
">bifariam ſecare
<
lb
/>
lineam a e; </
s
>
<
s
xml:id
="
echoid-s2932
"
xml:space
="
preserve
">itemq́; </
s
>
<
s
xml:id
="
echoid-s2933
"
xml:space
="
preserve
">lineas b d, a e inter ſe æquidiſtantes eſſe.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2934
"
xml:space
="
preserve
">Cumigitur c g per centrum circuli tranſeat; </
s
>
<
s
xml:id
="
echoid-s2935
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2936
"
xml:space
="
preserve
">ad punctũ
<
lb
/>
f perueniat neceſſe eſt: </
s
>
<
s
xml:id
="
echoid-s2937
"
xml:space
="
preserve
">quòd c d e f ſit dimidium circumfe
<
lb
/>
rentiæ circuli. </
s
>
<
s
xml:id
="
echoid-s2938
"
xml:space
="
preserve
">Quare in eadem
<
lb
/>
<
figure
xlink:label
="
fig-0117-01
"
xlink:href
="
fig-0117-01a
"
number
="
73
">
<
image
file
="
0117-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0117-01
"/>
</
figure
>
diametro c f erunt centra gra
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0117-01
"
xlink:href
="
note-0117-01a
"
xml:space
="
preserve
">13. Archi
<
lb
/>
medis.</
note
>
uitatis triangulorum b c d,
<
lb
/>
a f e, & </
s
>
<
s
xml:id
="
echoid-s2939
"
xml:space
="
preserve
">quadrilateri a b d e, ex
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0117-02
"
xlink:href
="
note-0117-02a
"
xml:space
="
preserve
">9. @iuſdé.</
note
>
quibus conſtat hexagonum a b
<
lb
/>
c d e f. </
s
>
<
s
xml:id
="
echoid-s2940
"
xml:space
="
preserve
">perſpicuum eſt igitur in
<
lb
/>
ipſa c f eſſe circuli centrum, & </
s
>
<
s
xml:id
="
echoid-s2941
"
xml:space
="
preserve
">
<
lb
/>
centrum grauitatis hexagoni.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2942
"
xml:space
="
preserve
">Rurſus ducta altera diametro
<
lb
/>
a d, eiſdem rationibus oſtende-
<
lb
/>
mus in ipſa utrumque cẽtrum
<
lb
/>
ineſſe. </
s
>
<
s
xml:id
="
echoid-s2943
"
xml:space
="
preserve
">Centrum ergo grauita-
<
lb
/>
tis hexagoni, & </
s
>
<
s
xml:id
="
echoid-s2944
"
xml:space
="
preserve
">centrum circuli idem erit.</
s
>
<
s
xml:id
="
echoid-s2945
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2946
"
xml:space
="
preserve
">Sit heptagonum a b c d e f g æquilaterum atque æquian
<
lb
/>
gulum in circulo deſcriptum:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2947
"
xml:space
="
preserve
">
<
figure
xlink:label
="
fig-0117-02
"
xlink:href
="
fig-0117-02a
"
number
="
74
">
<
image
file
="
0117-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/4E7V2WGH/figures/0117-02
"/>
</
figure
>
& </
s
>
<
s
xml:id
="
echoid-s2948
"
xml:space
="
preserve
">iungantur c e, b f, a g: </
s
>
<
s
xml:id
="
echoid-s2949
"
xml:space
="
preserve
">di-
<
lb
/>
uiſa autem c e bifariam in pũ
<
lb
/>
cto h: </
s
>
<
s
xml:id
="
echoid-s2950
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2951
"
xml:space
="
preserve
">iuncta d h produca-
<
lb
/>
tur in k. </
s
>
<
s
xml:id
="
echoid-s2952
"
xml:space
="
preserve
">non aliter demon-
<
lb
/>
ſtrabimus in linea d k eſſe cen
<
lb
/>
trum circuli, & </
s
>
<
s
xml:id
="
echoid-s2953
"
xml:space
="
preserve
">centrum gra-
<
lb
/>
uitatis trianguli c d e, & </
s
>
<
s
xml:id
="
echoid-s2954
"
xml:space
="
preserve
">tra-
<
lb
/>
peziorum b c e f, a b f g, hoc
<
lb
/>
eſt centrum totius heptago-
<
lb
/>
ni: </
s
>
<
s
xml:id
="
echoid-s2955
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s2956
"
xml:space
="
preserve
">rurſus eadem centra in
<
lb
/>
alia diametro cl ſimiliter du-
<
lb
/>
cta contineri. </
s
>
<
s
xml:id
="
echoid-s2957
"
xml:space
="
preserve
">Quare & </
s
>
<
s
xml:id
="
echoid-s2958
"
xml:space
="
preserve
">centrum grauitatis heptagoni, & </
s
>
<
s
xml:id
="
echoid-s2959
"
xml:space
="
preserve
">
<
lb
/>
centrum circuli in idem punctum conucniunt. </
s
>
<
s
xml:id
="
echoid-s2960
"
xml:space
="
preserve
">Eodem </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>