Galilei, Galileo, Les méchaniques, 1634
page |< < of 108 > >|
<archimedes>
<text>
<body>
<chap>
<p type="main">
<s id="s.000245">
<expan abbr="inclinatiõs">inclinations</expan>
des
<expan abbr="plãs">plans</expan>
FB, LB &c. </s>
<s id="s.000246">de ſorte
<lb/>
que l'on peut s'imaginer la deſcente de
<lb/>
C par tous les points du quart de cercle
<lb/>
CI, lequel contient vn plan qui s'incli­
<lb/>
ne perpetuellement de plus en plus,
<lb/>
& que la peſanteur du poids en C eſt
<lb/>
totale & entiere, & conſequemment
<lb/>
qu'il ſe porte de toute ſon inclination à
<lb/>
deſcendre, parce qu'il n'eſt nullement
<lb/>
empeſché par la
<expan abbr="circonferẽce">circonference</expan>
, lors qu'il
<lb/>
ſe rencontré ſur la tangente DCE. </s>
</p>
<p type="main">
<s id="s.000247">Mais quand il eſt en F, il eſt en partie
<lb/>
ſouſtenu par le plan circulaire, & ſa
<lb/>
pente, ou l'inclination qu'il a vers le
<lb/>
centre de la terre eſt autant diminuée
<lb/>
que BC ſurpaſſe BK: de maniere qu'il
<lb/>
ſe tient éleué ſur ce plan de meſme que
<lb/>
s'il eſtoit appuyé ſur la tangente GFH,
<lb/>
<expan abbr="d'autãt">d'autant</expan>
que le point d'inclination F de
<lb/>
la circonference CI ne differe point de
<lb/>
l'inclination de la tangente GFH, que
<lb/>
par l'angle inſenſible du contact. </s>
</p>
<p type="main">
<s id="s.000248">Il faut dire la meſme choſe du point
<lb/>
L, lequel eſt incliné comme s'il eſtoit
<lb/>
ſur le plan de la tangeule NLO, car il
<lb/>
diminuë ſa pente, & ſon
<expan abbr="inclinatiõ">inclination</expan>
qu'il
<lb/>
a en C en meſme proportion que Bk eſt
<lb/>
à BC, puis qu'il eſt conſtant par la </s>
</p>
</chap>
</body>
</text>
</archimedes>