Salusbury, Thomas, Mathematical collections and translations (Tome I), 1667
page |< < of 701 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s>
                <pb xlink:href="040/01/698.jpg" pagenum="6"/>
              and indubitable fundamentals. </s>
              <s>And becauſe, as I ſay, I deſire de­
                <lb/>
              monſtratively to aſſure you, and not with only probable diſcour­
                <lb/>
              ſes to perſwade you; preſuppoſing, that you have ſo much know­
                <lb/>
              ledge of the Mechanical Concluſions, by others heretofore funda­
                <lb/>
              mentally handled, as ſufficeth for our purpoſe; it is requiſite, that
                <lb/>
              before we proceed any further, we conſider what effect that is which
                <lb/>
              opperates in the Fraction of a Beam of Wood, or other Solid, whoſe
                <lb/>
              parts are firmly connected; becauſe this is the firſt
                <emph type="italics"/>
              Notion,
                <emph.end type="italics"/>
              where­
                <lb/>
              on the firſt and ſimple principle dependeth, which as familiarly
                <lb/>
              known, we may take for granted. </s>
              <s>For the clearer explanation
                <lb/>
              whereof; let us take the Cilinder, or Priſme,
                <emph type="italics"/>
              A. B.
                <emph.end type="italics"/>
              of Wood, or
                <lb/>
              other ſolid and coherent matter, faſtned above in
                <emph type="italics"/>
              A,
                <emph.end type="italics"/>
              and hanging
                <lb/>
              perpendicular; to which, at the other end
                <emph type="italics"/>
              B,
                <emph.end type="italics"/>
              let there hang the
                <lb/>
              Weight
                <emph type="italics"/>
              C
                <emph.end type="italics"/>
              : It is manifeſt, that how great ſoever the Tenacity and
                <lb/>
              coherence of the parts of the ſaid Solid to one another be, ſo it be
                <lb/>
              not infinite, it may be overcome by the
                <lb/>
              Force of the drawing Weight C: whoſe
                <lb/>
              Gravity I ſuppoſe may be encreaſed as much
                <lb/>
                <figure id="id.040.01.698.1.jpg" xlink:href="040/01/698/1.jpg" number="52"/>
                <lb/>
              as we pleaſe; by the encreaſe whereof the
                <lb/>
              ſaid Solid in fine ſhall break, like as if it had
                <lb/>
              been a Cord. </s>
              <s>And, as in a Cord, we under­
                <lb/>
              ſtand its reſiſtance to proceed from the mul­
                <lb/>
              titude of the ſtrings or threads in the Hemp
                <lb/>
              that compoſe it, ſo in Wood we ſee its veins,
                <lb/>
              and grain diſtended lengthwaies, that render
                <lb/>
              it far more reſiſting againſt Fraction, then any
                <lb/>
              Rope would be, of the ſame thickneſſe: but
                <lb/>
              in a Cylinder of ſtone or Metal the Tenacity
                <lb/>
              of its parts, (which yet ſeemeth greater) de­
                <lb/>
              pendeth on another kind of Cement,
                <lb/>
              than of ſtrings, or grains, and yet they alſo
                <lb/>
              being drawn with equivalent force, break.</s>
            </p>
            <p type="margin">
              <s>
                <margin.target id="marg997"/>
                <emph type="italics"/>
              By Accademick
                <lb/>
              here, as in his
                <lb/>
              Dialogues of the
                <lb/>
              Syſteme,
                <emph.end type="italics"/>
              Galile­
                <lb/>
              us
                <emph type="italics"/>
              meaneth him­
                <lb/>
              ſelf.
                <emph.end type="italics"/>
              </s>
            </p>
            <p type="margin">
              <s>
                <margin.target id="marg998"/>
              Ariſtotle
                <emph type="italics"/>
              the firſt
                <lb/>
              Obſerver of Me­
                <lb/>
              chanical Concluſi­
                <lb/>
              ons, but they nei­
                <lb/>
              ther not the moſt
                <lb/>
              curious nor ſolidly
                <lb/>
              demonſtrated.
                <emph.end type="italics"/>
              </s>
            </p>
            <p type="main">
              <s>SIMP. </s>
              <s>If the thing ſucceed as you ſay, I underſtand well
                <lb/>
              enough, that the thread or grain of the Wood which is as long as
                <lb/>
              the ſaid Wood may make it ſtrong and able to Reſiſt a great vio­
                <lb/>
              lence done to it to break it: But a Cord compoſed of ſtrings of
                <lb/>
              Hemp, no longer than two, or three foot a piece, how can it be ſo
                <lb/>
              ſtrong when it is ſpun out, it may be, to a hundred times that
                <lb/>
              length? </s>
              <s>Now I would farther underſtand your opinion concern­
                <lb/>
              ing the Connection of the parts of Metals, Stones, and other mat­
                <lb/>
              ters deprived of ſuch Ligatures, which nevertheleſſe, if I be not
                <lb/>
              deceived, are yet more tenacious.</s>
            </p>
            <p type="main">
              <s>SALV. </s>
              <s>We muſt be neceſſitated to digreſſe into new Specu­
                <lb/>
              lations, and not much to our purpoſe, if we ſhould reſolve thoſe
                <lb/>
              difficulties you ſtart.</s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>