120108IO. BAPT. BENED.
Diſponantur igitur huiuſmo-
163[Figure 163] di numeri tali ordine, vt fim-
plex ſumma, quæ ab vna reli-
quarum ſuperatur, & aliam ſupe-
rat, medium locum teneat; @t
in propoſito exemplo ſumma
mediocris eft .48. quę à ſumma .
60. ſuperatur, & ſuperat ſum-
mam .39. locata igitur fit hęc .48.
inter illas, ſuæ verò primæ partes
fimiliter conftitutæ ſint ſupra di-
ctas ſummas, cum ſuis differentijs,
& tria producta iam dicta, vt in fi
guris .C. et .D. arithmeticis
clarè patet: figura enim .C. eft
pro exemplo ipſius plus ſimpli-
citer: figura verò .D. pro exem-
plo ipſius plus, & minus. Et fic
164[Figure 164] in figura .C. habebimus tres
numeros confequentes .60. 48.
39. & tres antecedentes .10. 8.
6. cum dimidio, vnam, & ean-
dem proportionem terminantes,
ex .24. quinti, vt diximus; qua-
re eorum differentiæ fimiliter
proportionales erunt, quod etiam
vidimus. Supponamus nunc nos
ignorare æqualitatem maximi
producti cum reliquis duobus,
accipiendo ſolum pro hypoteſi,
quòd dicta producta oriantur
ex lateribus iam dictis.
163[Figure 163] di numeri tali ordine, vt fim-
plex ſumma, quæ ab vna reli-
quarum ſuperatur, & aliam ſupe-
rat, medium locum teneat; @t
in propoſito exemplo ſumma
mediocris eft .48. quę à ſumma .
60. ſuperatur, & ſuperat ſum-
mam .39. locata igitur fit hęc .48.
inter illas, ſuæ verò primæ partes
fimiliter conftitutæ ſint ſupra di-
ctas ſummas, cum ſuis differentijs,
& tria producta iam dicta, vt in fi
guris .C. et .D. arithmeticis
clarè patet: figura enim .C. eft
pro exemplo ipſius plus ſimpli-
citer: figura verò .D. pro exem-
plo ipſius plus, & minus. Et fic
164[Figure 164] in figura .C. habebimus tres
numeros confequentes .60. 48.
39. & tres antecedentes .10. 8.
6. cum dimidio, vnam, & ean-
dem proportionem terminantes,
ex .24. quinti, vt diximus; qua-
re eorum differentiæ fimiliter
proportionales erunt, quod etiam
vidimus. Supponamus nunc nos
ignorare æqualitatem maximi
producti cum reliquis duobus,
accipiendo ſolum pro hypoteſi,
quòd dicta producta oriantur
ex lateribus iam dictis.
Demonſtrandum nobis nunc relinquetur, maximum productum æquale effere-
liquis duobus; hoc eſt productum .168. æquale effe productis .90. et .78. quorum
duorum productorum alterum .90. ſcilicet, generatur à differentia .9. quæ eft ſe-
cundę, & tertię ſummæ, in primum numerum antecedentem, qui eſt .10. alterum vc-
ro productum .78. ſcilicet, generatur à differentia .12. quę eſt primę, & ſecundę, ſum
mę in tertium numerum antecedentem, qui eſt .6. cum dimidio, maximum vero
productum .168. ſcilicet generatur à differentia maxima .21. quę eft primę, & tertię
ſummę (& ſemper ęqualis prioribus duabus differentijs .12. et .9.) in ſecundum nu-
merum antecedentem, qui eſt .8.
liquis duobus; hoc eſt productum .168. æquale effe productis .90. et .78. quorum
duorum productorum alterum .90. ſcilicet, generatur à differentia .9. quæ eft ſe-
cundę, & tertię ſummæ, in primum numerum antecedentem, qui eſt .10. alterum vc-
ro productum .78. ſcilicet, generatur à differentia .12. quę eſt primę, & ſecundę, ſum
mę in tertium numerum antecedentem, qui eſt .6. cum dimidio, maximum vero
productum .168. ſcilicet generatur à differentia maxima .21. quę eft primę, & tertię
ſummę (& ſemper ęqualis prioribus duabus differentijs .12. et .9.) in ſecundum nu-
merum antecedentem, qui eſt .8.
Conſtituantur igitur duo producta fimul iuncta ęqualia duobus .90. et .78.
lateralibus ſupra vnam aliquam rectam lineam .q.p. fitque; productum .f.g. ęquale .
90. productum verò .g.n. ęquale .78. fit etiam baſis .g.p. vt .9. et .g.q. vt .12. vnde .g.i.
vel .q.n. erit vt .6. cum dimidio .et .g.d. vel .p.f. vt .10. & ideo .i.d. differentia erit .3.
lateralibus ſupra vnam aliquam rectam lineam .q.p. fitque; productum .f.g. ęquale .
90. productum verò .g.n. ęquale .78. fit etiam baſis .g.p. vt .9. et .g.q. vt .12. vnde .g.i.
vel .q.n. erit vt .6. cum dimidio .et .g.d. vel .p.f. vt .10. & ideo .i.d. differentia erit .3.