Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
51 39
52 40
53 41
54 42
55 43
56 44
57 45
58 46
59 47
60 48
61 49
62 50
63 51
64 52
65 53
66 54
67 55
68 56
69 57
70 58
71 59
72 60
73 61
74 62
75 63
76 64
77 65
78 66
79 67
80 70
< >
page |< < (48) of 445 > >|
6048IO. BAPT. BENED.
THEOREMA LXXIII.
HOC etiam problema à me inuentum eſt, nempe ſi duæ radices quadratæ in
ſummam collectæ fuerint, & ex dimidio eiuſmodi ſummæ detracta fuerit mi
nor radix, reſiduique; quadratum duplicatum eique; ſummæ coniungatur du-
plum producti ipſius reſidui in dimidium ſummæ radicum, atque huic ſummæ du-
plum producti eiuſdem reſidui in radicem minorem coniunctum fuerit;
vltima hæc
ſumma differentia erit duorum quadratorum propoſitorum.
Exempli gratia duæ radices quadraræ ſint .5. et .11. harum ſumma erit .16. & dimi
dium .8. differentia minoris ab ipſo dimidio erit .3: duplum quadrati huius differen
tiæ erit .18:
duplum producti huius differentię in dimidium ſummę radicum erit .48.
item & huius differentiæ duplum in minorem radicem erit .30. quarum omnium
ſumma erit .96. tantaq́ue erit differentia ſuorum quadratorum, quorum vnum
erit .25. alterum verò .121.
Pro cuius rei ſcientia, duæ quadratæ radices ſint .h.o. et .o.d. directæ inter ſe con-
iunctæ, quæ ſumma per medium in puncto .e. diuidatur, tum cogitetur .e.b. æqualis
o.e. perpendicularis .h.d. ducanturque; lineæ .b.h: b.o. et .b.d.
Iam ex .4. primi .b.h. æqua
lis erit .b.d. & quadratum .b.h. æquale quadrato .h.o. & quadrato .o.b. ſimul cum du
plo producti .o.e. in .o.h. ex .12. ſecundi Eucli.
Sed ex .13. eiuſdem quadratum .b.d.
minus eſt quadrato .o.d. cum quadrato .o.b. ex duplo producti .o.e. in .o.d. at duplum
eiuſmodi producti æquale eſt duplo qua-
drati .o.e. & duplo producti .o.e. in .e.d. ex
82[Figure 82] tertia eiuſdem, itaque duo quadrata ſcili-
cet .o.b. et .o.d. maiora erunt duobus qua-
dratis, nempe .o.b. et .o.h. collectis cum du
plo producti .o.e. in .o.h. ex duplo quadrati
o.e. vna cum duplo producti .o.e. in .e.d.
Qua
re differentia ſummæ duorum quadratorum
o.b. et .o.d. à ſumma duorum o.b. et .o.h. du
plum erit quadrati .o.e. cum duplo produ-
cti .o.e. in .e.d. & duplo producti .o.e. in .o.h.
Quòd ſi ex ſingulis duabus ſummis quadratorum demptum fuerit quadratum .o.b.
eadem producta & quadrata ipſius .o.e. remanebunt, tanquam differentia duorum
quadratorum .o.u. et .h.c.
THEOREMA LXXIIII.
CVR ſumma duorum extremorum quatuor terminorum proportionalium arith-
meticè, æqualis eſt ſummæ duorum mediorum, vbi nota hac in re neceſſa-
rium non eſſe proportionalitatem continuam exiſtere.
Exempli gratia, ſi darentur hi quatuor termini .20. 17. 9. 6. quorum proportio ea
dem eſſet primi ad ſecundum quæ tertij ad quartum, ſumma primi cum quarto eſſet
26. tantaque; ſecundi cum tertio.
Cuius ſpeculationis cauſa, primus maiorque; numerus ſignificetur linea .e.o. ſecun-
dus .s.q. tertius .u.c. quartus .g.t. differentia porrò inter .e.o. et .s.q. ſit .i.o. quæ æqualis
erit differentiæ .r.c. qua quartus à tertio ſuperatur ex hypotheſi.
Itaque aſſero ſum
mam .e.o. cum .g.t. nempe .a.o. æqualem eſſe ſummę .q.s. et .u.c. ſitque; .q.p.
Nam in .a.o.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index