6351THEOREM. ARIT.
cum in .b.t. præter .r.K. bis detur .c.t.K.t. et .b.r. duabus differentijs æquipol-
lens, illud efficitur .u.n. pariter ipſius .b.t. eſſe tertiam partem, quod erat propoſitum.
lens, illud efficitur .u.n. pariter ipſius .b.t. eſſe tertiam partem, quod erat propoſitum.
THEOREMA LXXVII.
CVR ſi quis velit ſecundum quinque continuorum proportionalium termi-
num inuenire, ſolis extremis cognitis. Rectè vltimum triplo primi coniunget,
ex qua ſumma quartam partem detraher, quæ erit ſecundus terminus quæſitus.
Quod ipſum faciet qui inuenire vult ſecundum terminum ſenarij ſeptenarij, octo-
narij aut alterius cuiuſcunque, creſcente tamen multiplicatione primi, vltimoque;
coniuncto.
num inuenire, ſolis extremis cognitis. Rectè vltimum triplo primi coniunget,
ex qua ſumma quartam partem detraher, quæ erit ſecundus terminus quæſitus.
Quod ipſum faciet qui inuenire vult ſecundum terminum ſenarij ſeptenarij, octo-
narij aut alterius cuiuſcunque, creſcente tamen multiplicatione primi, vltimoque;
coniuncto.
Exempli gratia, dantur duo extremi termini, horum quinque numerorum .18.
16. 14. 12. 10. nempe .18. et .10. ſi .18. primus erit, hoc eſt, ſi à genere maioris inæ-
qualitatis progrediemur, triplicabimus terminum .18. dabunturque; .54. cui numero
coniuncto quinto termino .10. dabitur numerus .64. cuius quarta pars erit .16. vtpo
tè ſecundus terminus gratia, aut ſecundi ſex terminorum, quadruplicandus eſſet pri
mus .18. deinde adiuncto vltimo, quinta pars ſummæ eſſet ſecundus terminus, atque;
ita deinceps.
16. 14. 12. 10. nempe .18. et .10. ſi .18. primus erit, hoc eſt, ſi à genere maioris inæ-
qualitatis progrediemur, triplicabimus terminum .18. dabunturque; .54. cui numero
coniuncto quinto termino .10. dabitur numerus .64. cuius quarta pars erit .16. vtpo
tè ſecundus terminus gratia, aut ſecundi ſex terminorum, quadruplicandus eſſet pri
mus .18. deinde adiuncto vltimo, quinta pars ſummæ eſſet ſecundus terminus, atque;
ita deinceps.
Cuius ſpeculationis gratia, dicti termini lineis .z.h: f.s: u.p: e.g. et .r.x. ſigniſicentur.
In primis ex genere maioris inæqualitatis, triplicabimus .z.h. ſitque; triplum hoc .k.
h. cuiconiungatur .b.k. ęqualis vltimo termino .r.x. Dico .f.s. quartam partem eſſe ſum-
mę .b.h. Nam in .k.h. ſecundus terminus .f.s. ter cum tribus differentijs æqualibus .n.h.
reperitur. Probandum nunc eſt tres has differentias .n.h: a.c. et .d.k. ſimul cum .b.
K. ęquales eſſe .f.s.
86[Figure 86] quod in dubium re
uocari non poteſt,
cum .f.s. ſuperet .
r.x. per .o.s: t.p. et .
i.g. At in genere
minoris inæquali
tatis, triplum .r.x.
ſit .x.a. et .a.b. ſit
æqualis .z.h. & cum
z.h. tribus differem
tijs .n.h: o.s: t.p. ſu-
peret .e.g. quæ in .
a.b. ſint .b.K: K.d:
d.c. ex quo .a.c.
æqualis erit .e.g.
et .a.x. cum .b.c. tripla .e.g. Itaque tota ſumma .b.x. qua drupla erit .e.g.
In primis ex genere maioris inæqualitatis, triplicabimus .z.h. ſitque; triplum hoc .k.
h. cuiconiungatur .b.k. ęqualis vltimo termino .r.x. Dico .f.s. quartam partem eſſe ſum-
mę .b.h. Nam in .k.h. ſecundus terminus .f.s. ter cum tribus differentijs æqualibus .n.h.
reperitur. Probandum nunc eſt tres has differentias .n.h: a.c. et .d.k. ſimul cum .b.
K. ęquales eſſe .f.s.
86[Figure 86] quod in dubium re
uocari non poteſt,
cum .f.s. ſuperet .
r.x. per .o.s: t.p. et .
i.g. At in genere
minoris inæquali
tatis, triplum .r.x.
ſit .x.a. et .a.b. ſit
æqualis .z.h. & cum
z.h. tribus differem
tijs .n.h: o.s: t.p. ſu-
peret .e.g. quæ in .
a.b. ſint .b.K: K.d:
d.c. ex quo .a.c.
æqualis erit .e.g.
et .a.x. cum .b.c. tripla .e.g. Itaque tota ſumma .b.x. qua drupla erit .e.g.
THEOREMA LXXVIII.
QVantitates quæ fuerint inuicem in proportionalitate arithmetica proportio-
nales, permutan do quoque proportionales erunt.
nales, permutan do quoque proportionales erunt.