Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
61 49
62 50
63 51
64 52
65 53
66 54
67 55
68 56
69 57
70 58
71 59
72 60
73 61
74 62
75 63
76 64
77 65
78 66
79 67
80 70
81 71
82 70
83 71
84 72
85 73
86 74
87 75
88 76
89 77
90 78
< >
page |< < (54) of 445 > >|
6654IO. BAPT. BENED.
THEOREMA LXXXII.
CVR quantitate aliqua in quatuor partes continuas proportionales ſecta per-
q́ue ſingulas diuiſa, ſumma quatuor prouenientium æqualis ſit producto ſe-
cundi in tertium.
Exempli gratia, ſi triginta in quatuor partes proportionales ſecetur, hoc eſt.
16. 8. 4. 2. perque; harum ſingulas idem numerus .30. diuidatur, primum proueniens
erit .1. cum ſeptem octauis partibus.
Secundum .3. cum tribus quartis, tertium .7.
cum dimidio, quartum .15. integri, quorum ſumma erit .28. cum octaua parte, tan
tumque; erit productum ſecundi prouenientis in tertium.
Quod vt ſciamus, quantitas .n.c. in partes continuas proportionales quatuor ſe-
cetur .n.a: a.t: t.e. et .e.c. rurſusque; per ſingulas partes illa ipſa diuiſa, prouenientia
ſint .i.d: d.x: x.u: u.o. quorum ſumma ſit .i.o. hanc ſummam dicimus æqualem eſſe nume-
ro producti .d.x. in .x.u.
Quod hac ratione probo, cogito productam eſſe lineam .i.o. quousque; .o.p. æqua
lis ſit .o.u. erectamque; .m.o. æqualem .i.d. perpendiculariter .o.p. & productam donec .
o.q.
vnitati ſit æqualis.
Iam terminatis rectangulis .m.p. et .i.q. patebit ex .15. ſexti
aut .20. ſeptimi, productum .m.p. producto .d.x. in .x.u. æquale eſſe.
Ita quòd ſi pro-
bauero productum .i.q. producto .m.p. æquale eſſe, facile patebit propoſitum.
Cuius
gratia, ſequuti præcedentis theorematis ordinem, primum ex definitionem diuiſionis,
eadem proportio erit .n.c. ad .i.d. quæ .n.a. ad .o.q. ex quo permutando .n.c. ad .n.a. ſic
ſe habebit vt .i.d. hoc eſt .m.o. ad .o.q. & ſi progrediamur eodem ordine, quo præ-
cedenti theoremate, ſumpto principio ab .i.d. et .e.c. verſus .d.x. et .e.t. gradatimq́ue
permutando ac coniungendo, inue-
91[Figure 91] niemus eandem proportionem eſſe
c.n. ad .n.a. quæ .i.o. ad .o.u. nempe .
o.p.
ex quo ex .11 quinti, ita ſe habe
bit .i.o. ad .o.p. vt .m.o. ad .o.q.
quare
ex .15. ſextiaut .20. ſeptimi produ-
ctum
.i.q. erit producto .m.p. æquale,
ex quo etiam æquale erit producto .
d.x.
in .x.u.
Idem ordo in qualibet
quantitate in quantaſuis partes diuiſa ſeruari poterit, cum huiuſmodi ſcientia in vni
uerſum pateat.
THEOREMA LXXXIII.
CVR termini medij cubus, trium continuè proportionalium, ſemper producto
rectanguli compræhenſi à maximo & medio in minimo termino æqualis ſit.
Exempli gratia, datis his tribus terminis continuis proportionalibus .9. 6. 4. ſi
ſumpſerimus productum maximi in medium nempe .54. quod per minimum .4. multi-
plicemus, dabitur numerus .216. cubo medij .6. æqualis.
In cuius gratiam tres numeri continui proportionales tribus lineis .a.e.i. ſignifi-
centur
, cubus autem .e. ſignificetur figura .d.n. productumque .a. in .e. ſit .b.n. ipſius au-
temmet
in .i. ſit .p.o. ita quod .q.p. aut .b.o. cum ſint eiuſdem ſpeciei, æqualis erit .a: et .o.n.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index