Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
71 59
72 60
73 61
74 62
75 63
76 64
77 65
78 66
79 67
80 70
81 71
82 70
83 71
84 72
85 73
86 74
87 75
88 76
89 77
90 78
91 79
92 80
93 81
94 82
95 89
96 84
97 85
98 96
99 87
100 88
< >
page |< < (59) of 445 > >|
7159THEOREM. ARIT. eſſe gnomoni .e.c.u. itemque; gnomonem .b.f.d. æqualem gnomoni .b.o.d. at hic gno-
mon .b.o.d. ex præſuppoſito, maior eſt gnomone .e.o.u. duabus vnitatibus .b. et .d.
Itaque etiam gnomon .b.f.d. duabus vnitatibus gnomonem .e.c.u. ſuperabit.
Qua-
re .b.f.d. erit impar immediatè ſequens ternarium, qui coniunctus quadrato .o.c.
quadratum ſubſequens componet.
Eadem ratione probabitur de quadrato .o.n. ſe
quenti .o.f. & gnomone .i.n.a. cum hic ordo ſpeculationis ſit vniuerſalis.
In
quo cernitur quemlibet gnomonem ſibi contiguum inferiorem ſemper duabus vni-
tat ibus excedere, cumque quadrata non niſi gnomonibus ſibi inuicem ſuccedant.
Sed cum primus .e.c.u. diſpar fuerit, proculdubio etiam neceſſarioque; cæteri diſpares erunt.
Ex qua ſpeculatione, oritur regula ab antiquis tradita
inueniendi vltimi numeri diſparis concurrentis ad compo­
ſitionem 99[Figure 99] compo­
ſitionem
alicuius quadrati.
Vt ſi quis ſeire deſideret nu-
merum vltimum diſparem, quo mediante quadratum .
o.n.
conſtitutum fuit, quod aliud non eſt quam ſcire
quantus ſit numerus vltimi gnomonis .i.n.a. æqualis gno
moni .i.o.a.
Itaque vt ſciamus hunc gnomonem .i.o.a.
patet duplicandam eſſe radicem .o.e.b.i. dabiturque, .o.e.
b.i.
et .o.u.d.a. vbi bis reperitur .o. nos autem tantummo
do quærimus ſcire gnomonem .i.b.e.o.u.d.a.
Itaque
minor eſt vnitate duplo radicis, cum unitas .o. bis repe-
tatur, quæ tamen in gnomone ſemel tantum ſumebatur.
THEOREMA XCI.
CVR ſumma quadratorum, quorum radices ſunt in proportione ſeſquitertia
nempe .4. ad .3. quadrata ſit.
Exempli gratia, ſumemus quadratum .3. ſcilicet 9. quod in ſummam cum qua-
drato .4. colligemus, nempè .16. eritque; quadratum .25. & ita quadratum .6. hoc eſt .
36.
collectum cum quadrato .8. nempè .64. efficiet quadratum .100. ita etiam qua-
dratum .9. hoceſt .81. coniunctum quadrato .12. nempè .144. producet quadra-
tum .225.
In cuius gratiam ſint duo quadrata ſubſcripta .q.o. et .q.a. quorum radices ſint .q.
100[Figure 100] g. et .q.p. hoc eſt .q.g. quatuor vnitatum, et .q.
p.
trium, ex quo .q.a. erit .16. vnitatum et .q.o.
nouem.
Ad hæc cogitemus applicari quadra-
to .q.a. gnomonem .f.s.h. tam amplum ſiue la-
tum quam gnomon .b.a.g. nempè vt .h. ſit æqua
lis .g: g. verò differentia ſit qua .q.g. maior eſt .
q.p.
huncque; gnomonem .f.s.h. dico ęqualem eſ
ſe quadrato .q.o. nam ex preſuppoſito .g. terra
dicem .q.p. ingreditur, & quater .q.g. ex quo,
tres partes .q.k.p. inter ſe æquales ſunt vnde
etiam quadratum .q.o. nouem partibus ſuper-
ficialibus quadratis conſtabit, quarum ſingula
rum radix æqualis erit .g. cumque præcedenti
theoremate didicerimus quemlibet gnomo-
nem quadrati immediatè ſequentis æquę amplitudinis cum gnomone præcedentis,

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index