7664IO. BAPT. BENED.
numerus quæſitus erit.
Quod intelligendum eſttamen quoties primus terminus differentia terminorum
eſt, nempe aſcendens ipſorum ter minorum.
eſt, nempe aſcendens ipſorum ter minorum.
Cuius ratio manifeſtè ſpeculari poteſt in figura præcedentis theorematis.
Nam
diuiſa .a.o. per .n.n.n.n. eadem proportio erit .a.o. ad proueniens, quæ. n .n.n.
n. ad vnitatem .n. ex definitione diuiſionis. At ſuperius dictum fuit ita ſe ha bere .a.
o. ad .o.n. vt .n.n.n.n. ad .n. ex quo ſequitur ex .11. et .9. quinti pr oueniens eſſe nume-
rum quæſitum .o.n.
diuiſa .a.o. per .n.n.n.n. eadem proportio erit .a.o. ad proueniens, quæ. n .n.n.
n. ad vnitatem .n. ex definitione diuiſionis. At ſuperius dictum fuit ita ſe ha bere .a.
o. ad .o.n. vt .n.n.n.n. ad .n. ex quo ſequitur ex .11. et .9. quinti pr oueniens eſſe nume-
rum quæſitum .o.n.
THEOREMA XCVII.
VBI verò primus terminus, reliquorum non erit differentia.
Hac de caufa ne-
ceſſe eſt detrahere primum ex vltimo, reſiduumque; per numerum aſcenden-
tem differentiam ſcilicet, partiri, proueniensque; vnitati coniungere, quò numerum
terminorum habere poſſimus. Scimus etenim tam multas vnitates eſſe in vltimo
terminorum quot in omnibus interuallis aut differentijs in ſummam collectis ſimul
cum vnitatibus primi termini, totque; funt termini, quot interualla ſimul cum pri-
motermino. Quare fi minimus terminus interuallo æqualis fuerit. Vltimo per pri-
mum diuiſo, ex a dductis præcedenti theoremate propofitum confequemur. Itaque;
primo termino ex vltimo detracto refiduoque; per interuallum, hoc eft numerum dif-
ferentiæ diuifo, proueniens erit numerus terminorum abſque primo quod vnus eft,
coni uncto quoque dicto prouenienti propoſitum conſequemur.
ceſſe eſt detrahere primum ex vltimo, reſiduumque; per numerum aſcenden-
tem differentiam ſcilicet, partiri, proueniensque; vnitati coniungere, quò numerum
terminorum habere poſſimus. Scimus etenim tam multas vnitates eſſe in vltimo
terminorum quot in omnibus interuallis aut differentijs in ſummam collectis ſimul
cum vnitatibus primi termini, totque; funt termini, quot interualla ſimul cum pri-
motermino. Quare fi minimus terminus interuallo æqualis fuerit. Vltimo per pri-
mum diuiſo, ex a dductis præcedenti theoremate propofitum confequemur. Itaque;
primo termino ex vltimo detracto refiduoque; per interuallum, hoc eft numerum dif-
ferentiæ diuifo, proueniens erit numerus terminorum abſque primo quod vnus eft,
coni uncto quoque dicto prouenienti propoſitum conſequemur.
THEOREMA XCVIII.
CVR fi quis arithmeticæ progreſſionis dato primo & vltimo fimul cum nume
ro terminorum, afcendentem numerum cognofcere voluerit. Rectè primuin
ex vltimo detrahet, refiduumque; per numerum terminorum excepto vno diuidet.
ro terminorum, afcendentem numerum cognofcere voluerit. Rectè primuin
ex vltimo detrahet, refiduumque; per numerum terminorum excepto vno diuidet.
Huius theorematis ſpeculatio ex .13. theoremate manifeſta crit, nam in præce-
denti cap. numerus terminorum erat proueniens diuiſionis reſidui ſubtractionis pri-
mi termini ex vltimo.
denti cap. numerus terminorum erat proueniens diuiſionis reſidui ſubtractionis pri-
mi termini ex vltimo.
THEOREMA XCIX.
CVR ſi quis maximum omnium terminorum dictæ progreffionis cognofcere
voluerit, dato primo vnà cum numero aſcendenti, numeroque; terminorum. Re-
ctè numerum afcendentem cum numero terminorum excepto vno multiplicabit,
productoque; primum terminum coniunget.
voluerit, dato primo vnà cum numero aſcendenti, numeroque; terminorum. Re-
ctè numerum afcendentem cum numero terminorum excepto vno multiplicabit,
productoque; primum terminum coniunget.
Cuius quidem theorematis tum ex vndecimo, tum ex ijs quæ præcedentibus ca-
pitibus dicta fuerunt, aperta eſt ratio.
pitibus dicta fuerunt, aperta eſt ratio.
THEOREMA C.
CVR veteres cupientes obtinere ſummam progreffionis continuæ naturalis,
quæab vnitate initium ducit, dato vltimo termino tantummodo. Dimidium
vltimi-termini cum toto fequente multiplicabant, productumque; ſumma quæſita erat.
quæab vnitate initium ducit, dato vltimo termino tantummodo. Dimidium
vltimi-termini cum toto fequente multiplicabant, productumque; ſumma quæſita erat.
Exempli gratia, ſi vltimus terminus eiuſmodi progreſſionis fuerit .7. multiplica-