Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
131 119
132 120
133 121
134 122
135 123
136 124
137 125
138 126
139 127
140 128
141 129
142 130
143 131
144 132
145 133
146 134
147 135
148 136
149 137
150 138
151 139
152 140
153 141
154 142
155 143
156 144
157 145
158 146
159 147
160 148
< >
page |< < (95) of 445 > >|
THEOREM. ARITH.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div269" type="math:theorem" level="3" n="141">
              <p>
                <s xml:id="echoid-s1236" xml:space="preserve">
                  <pb o="95" rhead="THEOREM. ARITH." n="107" file="0107" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0107"/>
                  <var>e.o.</var>
                eſſe duas primas vrnas vini miſti hoc eſt primæ miſtionis, vnde cum eadem pro
                  <lb/>
                portio ſit
                  <var>.a.i.</var>
                ad
                  <var>.i.u.</var>
                vt
                  <var>.e.i.</var>
                ad
                  <var>.i.o.</var>
                ita erit (ex .19. quinti).
                  <var>a.e.</var>
                ad
                  <var>.o.u.</var>
                ut
                  <var>.a.i.</var>
                ad
                  <var>.i.u.</var>
                &
                  <lb/>
                  <reg norm="componendo" type="context">componẽdo</reg>
                ita erit
                  <var>.a.e.</var>
                cum
                  <var>.o.u.</var>
                hoc eſt
                  <var>.i.o.u.</var>
                (proptereà quòd
                  <var>.i.o.</var>
                æqualis eſt
                  <var>.a.e.</var>
                  <lb/>
                vt reſidua totorum æqualium) ad
                  <var>.o.u.</var>
                quemadmodum
                  <var>.a.i.u.</var>
                ad
                  <var>.i.u</var>
                . </s>
                <s xml:id="echoid-s1237" xml:space="preserve">Quare
                  <var>.i.u.</var>
                erit
                  <lb/>
                media proportionalis inter
                  <var>.a.u.</var>
                et
                  <var>.o.u.</var>
                vnde proportio
                  <var>.a.u.</var>
                ad
                  <var>.o.u.</var>
                dupla erit pro
                  <lb/>
                portioni
                  <var>.i.u.</var>
                ad
                  <var>.o.u</var>
                . </s>
                <s xml:id="echoid-s1238" xml:space="preserve">Nunc autem cum extracta fuerit quantitas
                  <var>.e.o.</var>
                ex primo mi-
                  <lb/>
                ſto, & poſteà infuſa aqua vſque ad plenitudinem dolij, proportio ingredientium
                  <lb/>
                huius ſecundi miſti erit ea, quæ eſt inter
                  <var>.o.u.</var>
                et
                  <var>.o.a.</var>
                eo quòd in prima miſtione pro-
                  <lb/>
                proportio ingredientium erat ea, quæ eſt inter
                  <var>.o.u.</var>
                et
                  <var>.a.e.</var>
                vel inter
                  <var>.a.e.</var>
                et
                  <var>.o.u.</var>
                  <lb/>
                vt demonſtrauimus. </s>
                <s xml:id="echoid-s1239" xml:space="preserve">Accipiamus ergo
                  <var>.t.m.</var>
                huiuſmodi ſecundi mifti, magnitudi-
                  <lb/>
                nis
                  <var>.a.i.</var>
                vel
                  <var>.e.o.</var>
                ſignificantis duas vrnas, & permutemus eum in tantam aquam,
                  <lb/>
                  <reg norm="ſitque" type="simple">ſitq́;</reg>
                punctum
                  <var>.o.</var>
                quod nobis diuidat
                  <var>t.m.</var>
                in
                  <var>.o.m.</var>
                et,
                  <var>o.t.</var>
                partes ſimplices, tali propor
                  <lb/>
                tione inuicem relatas, vt ſunt
                  <var>.o.u.</var>
                et
                  <var>.o.a.</var>
                vnde habebimus ex ſupradictis rationibus
                  <lb/>
                eandem proportionem ipſius
                  <var>.a.t.</var>
                ad
                  <var>.m.u.</var>
                vt
                  <var>.a.o.</var>
                ad
                  <var>.o.u.</var>
                & componendo
                  <var>.a.t.</var>
                cum
                  <var>.m.
                    <lb/>
                  u.</var>
                hoc eſt
                  <var>.i.m.u.</var>
                (eo quod cum
                  <var>.t.m.</var>
                æqualis ſit
                  <var>.a.i.</var>
                per conſequens
                  <var>.i.m.</var>
                æqualis erit
                  <var>.
                    <lb/>
                  a.t.</var>
                ) ad
                  <var>.m.u.</var>
                vt
                  <var>.a.o.u.</var>
                ad
                  <var>.o.u.</var>
                ſed proportio
                  <var>.a.o.u.</var>
                ad
                  <var>.o.u.</var>
                dupla erat proportioni
                  <var>.i.o.
                    <lb/>
                  u.</var>
                ad
                  <var>.o.u.</var>
                quemadmodum ſupra diximus. </s>
                <s xml:id="echoid-s1240" xml:space="preserve">Ergo proportio
                  <var>.i.m.u.</var>
                ad
                  <var>.m.u.</var>
                erit dupla
                  <lb/>
                ſimiliter proportioni
                  <var>.i.o.u.</var>
                ad
                  <var>.o.
                    <lb/>
                  u.</var>
                quapropter
                  <var>.o.u.</var>
                erit media pro­
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0107-01a" xlink:href="fig-0107-01"/>
                portionalis inter
                  <var>.i.u.</var>
                et
                  <var>.m.u</var>
                . </s>
                <s xml:id="echoid-s1241" xml:space="preserve">Ec-
                  <lb/>
                ce igitur quomodo eadem eſt pro
                  <lb/>
                portio
                  <var>.a.u.</var>
                ad
                  <var>.i.u.</var>
                quæ
                  <var>.i.u.</var>
                ad
                  <var>.o.u.</var>
                & quæ
                  <var>.o.u.</var>
                ad
                  <var>.m.u.</var>
                qui quidem modus neceſſarius
                  <lb/>
                eſt vt intellectus acquieſcat, id quod experientia non facit.</s>
              </p>
              <div xml:id="echoid-div269" type="float" level="4" n="1">
                <figure xlink:label="fig-0107-01" xlink:href="fig-0107-01a">
                  <image file="0107-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0107-01"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div271" type="math:theorem" level="3" n="142">
              <head xml:id="echoid-head161" xml:space="preserve">THEOREMA
                <num value="142">CXLII</num>
              .</head>
              <p>
                <s xml:id="echoid-s1242" xml:space="preserve">PRæcedens Tartaleæ quæſitum elegans quidem eſt, ſed pulchrum etiam vide-
                  <lb/>
                tur quærere proportionem ingredientium in ultima miſtione, cum cognita fue
                  <lb/>
                rit nobis proportio continentiæ dolij ad capacitatis vrnæ ſimul
                  <reg norm="cum" type="context">cũ</reg>
                numero vitium
                  <lb/>
                extractionum & impletionum.</s>
              </p>
              <p>
                <s xml:id="echoid-s1243" xml:space="preserve">Exempli gratia, ſi proportio
                  <var>.a.u.</var>
                ad
                  <var>.a.i.</var>
                cognita nobis fuerit, cognoſcemus etiam
                  <lb/>
                  <var>e.i.</var>
                ex regula de tribus & per conſequens etiam
                  <var>.i.o.</var>
                reſiduum ex
                  <var>.e.o.</var>
                & ſimiliter ag-
                  <lb/>
                gregatum
                  <var>.a.i.</var>
                cum
                  <var>.i.o.</var>
                & ſic
                  <var>.o.u.</var>
                reſiduum totius, et
                  <var>.o.t.</var>
                ſimiliter, eo quòd
                  <var>.a.u.</var>
                ad
                  <var>.a.
                    <lb/>
                  o.</var>
                eſt ut
                  <var>.t.m.</var>
                ad
                  <var>.o.t.</var>
                vnde cognoſcemus etiam
                  <var>.o.m.</var>
                vt reſiduum
                  <var>.t.m.</var>
                & ſimiliter ag-
                  <lb/>
                gregatum
                  <var>.a.o.</var>
                cum
                  <var>.o.m.</var>
                hoc eſt
                  <var>.a.m.</var>
                & etiam
                  <var>.m.u.</var>
                reſiduum totius.</s>
              </p>
              <p>
                <s xml:id="echoid-s1244" xml:space="preserve">Cognoſcere autem proportionem totius dolij ad vrnam, vel ècontrà, cum cogni
                  <lb/>
                ta nobis fuerit proportio ingredientium in vltima miſtione ſimul cum numero vi-
                  <lb/>
                tium extractionum, & repletionum, quod ſcribit Tartalea, hoc etiam modo
                  <lb/>
                poſſumus.</s>
              </p>
              <p>
                <s xml:id="echoid-s1245" xml:space="preserve">Exempli gratia, ſi proportio
                  <var>.m.u.</var>
                ad
                  <var>.m.a.</var>
                cognita nobis fuerit, illicò ſcie-
                  <lb/>
                mus proportionem
                  <var>.a.u.</var>
                ad
                  <var>.m.u.</var>
                & cum ſciuerimus numerum vitium extractionum,
                  <lb/>
                & impletionum illicò cognoſci-
                  <lb/>
                mus multiplicitatem proportio-
                  <lb/>
                nis
                  <var>.a.u.</var>
                ad
                  <var>.m.u.</var>
                ad proportionem
                  <var>.
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0107-02a" xlink:href="fig-0107-02"/>
                  o.u.</var>
                ad
                  <var>.m.u.</var>
                quapropter propor-
                  <lb/>
                tio
                  <var>.o.u.</var>
                ad
                  <var>.m.u.</var>
                nobis cognita erit
                  <lb/>
                hoc eſt
                  <var>.a.u.</var>
                ad
                  <var>.i.u.</var>
                & ſimiliter ea, quæ eſt
                  <var>.a.u.</var>
                ad
                  <var>.a.i.</var>
                & è conuerſo ſimiliter.</s>
              </p>
              <div xml:id="echoid-div271" type="float" level="4" n="1">
                <figure xlink:label="fig-0107-02" xlink:href="fig-0107-02a">
                  <image file="0107-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0107-02"/>
                </figure>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>