Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
81 71
82 70
83 71
84 72
85 73
86 74
87 75
88 76
89 77
90 78
91 79
92 80
93 81
94 82
95 89
96 84
97 85
98 96
99 87
100 88
101 89
102 90
103 91
104 92
105 93
106 94
107 95
108 96
109 97
110 98
< >
page |< < (95) of 445 > >|
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div269" type="math:theorem" level="3" n="141">
              <p>
                <s xml:id="echoid-s1236" xml:space="preserve">
                  <pb o="95" rhead="THEOREM. ARITH." n="107" file="0107" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0107"/>
                  <var>e.o.</var>
                eſſe duas primas vrnas vini miſti hoc eſt primæ miſtionis, vnde cum eadem pro
                  <lb/>
                portio ſit
                  <var>.a.i.</var>
                ad
                  <var>.i.u.</var>
                vt
                  <var>.e.i.</var>
                ad
                  <var>.i.o.</var>
                ita erit (ex .19. quinti).
                  <var>a.e.</var>
                ad
                  <var>.o.u.</var>
                ut
                  <var>.a.i.</var>
                ad
                  <var>.i.u.</var>
                &
                  <lb/>
                  <reg norm="componendo" type="context">componẽdo</reg>
                ita erit
                  <var>.a.e.</var>
                cum
                  <var>.o.u.</var>
                hoc eſt
                  <var>.i.o.u.</var>
                (proptereà quòd
                  <var>.i.o.</var>
                æqualis eſt
                  <var>.a.e.</var>
                  <lb/>
                vt reſidua totorum æqualium) ad
                  <var>.o.u.</var>
                quemadmodum
                  <var>.a.i.u.</var>
                ad
                  <var>.i.u</var>
                . </s>
                <s xml:id="echoid-s1237" xml:space="preserve">Quare
                  <var>.i.u.</var>
                erit
                  <lb/>
                media proportionalis inter
                  <var>.a.u.</var>
                et
                  <var>.o.u.</var>
                vnde proportio
                  <var>.a.u.</var>
                ad
                  <var>.o.u.</var>
                dupla erit pro
                  <lb/>
                portioni
                  <var>.i.u.</var>
                ad
                  <var>.o.u</var>
                . </s>
                <s xml:id="echoid-s1238" xml:space="preserve">Nunc autem cum extracta fuerit quantitas
                  <var>.e.o.</var>
                ex primo mi-
                  <lb/>
                ſto, & poſteà infuſa aqua vſque ad plenitudinem dolij, proportio ingredientium
                  <lb/>
                huius ſecundi miſti erit ea, quæ eſt inter
                  <var>.o.u.</var>
                et
                  <var>.o.a.</var>
                eo quòd in prima miſtione pro-
                  <lb/>
                proportio ingredientium erat ea, quæ eſt inter
                  <var>.o.u.</var>
                et
                  <var>.a.e.</var>
                vel inter
                  <var>.a.e.</var>
                et
                  <var>.o.u.</var>
                  <lb/>
                vt demonſtrauimus. </s>
                <s xml:id="echoid-s1239" xml:space="preserve">Accipiamus ergo
                  <var>.t.m.</var>
                huiuſmodi ſecundi mifti, magnitudi-
                  <lb/>
                nis
                  <var>.a.i.</var>
                vel
                  <var>.e.o.</var>
                ſignificantis duas vrnas, & permutemus eum in tantam aquam,
                  <lb/>
                  <reg norm="ſitque" type="simple">ſitq́;</reg>
                punctum
                  <var>.o.</var>
                quod nobis diuidat
                  <var>t.m.</var>
                in
                  <var>.o.m.</var>
                et,
                  <var>o.t.</var>
                partes ſimplices, tali propor
                  <lb/>
                tione inuicem relatas, vt ſunt
                  <var>.o.u.</var>
                et
                  <var>.o.a.</var>
                vnde habebimus ex ſupradictis rationibus
                  <lb/>
                eandem proportionem ipſius
                  <var>.a.t.</var>
                ad
                  <var>.m.u.</var>
                vt
                  <var>.a.o.</var>
                ad
                  <var>.o.u.</var>
                & componendo
                  <var>.a.t.</var>
                cum
                  <var>.m.
                    <lb/>
                  u.</var>
                hoc eſt
                  <var>.i.m.u.</var>
                (eo quod cum
                  <var>.t.m.</var>
                æqualis ſit
                  <var>.a.i.</var>
                per conſequens
                  <var>.i.m.</var>
                æqualis erit
                  <var>.
                    <lb/>
                  a.t.</var>
                ) ad
                  <var>.m.u.</var>
                vt
                  <var>.a.o.u.</var>
                ad
                  <var>.o.u.</var>
                ſed proportio
                  <var>.a.o.u.</var>
                ad
                  <var>.o.u.</var>
                dupla erat proportioni
                  <var>.i.o.
                    <lb/>
                  u.</var>
                ad
                  <var>.o.u.</var>
                quemadmodum ſupra diximus. </s>
                <s xml:id="echoid-s1240" xml:space="preserve">Ergo proportio
                  <var>.i.m.u.</var>
                ad
                  <var>.m.u.</var>
                erit dupla
                  <lb/>
                ſimiliter proportioni
                  <var>.i.o.u.</var>
                ad
                  <var>.o.
                    <lb/>
                  u.</var>
                quapropter
                  <var>.o.u.</var>
                erit media pro­
                  <lb/>
                  <figure xlink:label="fig-0107-01" xlink:href="fig-0107-01a" number="147">
                    <image file="0107-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0107-01"/>
                  </figure>
                portionalis inter
                  <var>.i.u.</var>
                et
                  <var>.m.u</var>
                . </s>
                <s xml:id="echoid-s1241" xml:space="preserve">Ec-
                  <lb/>
                ce igitur quomodo eadem eſt pro
                  <lb/>
                portio
                  <var>.a.u.</var>
                ad
                  <var>.i.u.</var>
                quæ
                  <var>.i.u.</var>
                ad
                  <var>.o.u.</var>
                & quæ
                  <var>.o.u.</var>
                ad
                  <var>.m.u.</var>
                qui quidem modus neceſſarius
                  <lb/>
                eſt vt intellectus acquieſcat, id quod experientia non facit.</s>
              </p>
            </div>
            <div xml:id="echoid-div271" type="math:theorem" level="3" n="142">
              <head xml:id="echoid-head161" xml:space="preserve">THEOREMA
                <num value="142">CXLII</num>
              .</head>
              <p>
                <s xml:id="echoid-s1242" xml:space="preserve">PRæcedens Tartaleæ quæſitum elegans quidem eſt, ſed pulchrum etiam vide-
                  <lb/>
                tur quærere proportionem ingredientium in ultima miſtione, cum cognita fue
                  <lb/>
                rit nobis proportio continentiæ dolij ad capacitatis vrnæ ſimul
                  <reg norm="cum" type="context">cũ</reg>
                numero vitium
                  <lb/>
                extractionum & impletionum.</s>
              </p>
              <p>
                <s xml:id="echoid-s1243" xml:space="preserve">Exempli gratia, ſi proportio
                  <var>.a.u.</var>
                ad
                  <var>.a.i.</var>
                cognita nobis fuerit, cognoſcemus etiam
                  <lb/>
                  <var>e.i.</var>
                ex regula de tribus & per conſequens etiam
                  <var>.i.o.</var>
                reſiduum ex
                  <var>.e.o.</var>
                & ſimiliter ag-
                  <lb/>
                gregatum
                  <var>.a.i.</var>
                cum
                  <var>.i.o.</var>
                & ſic
                  <var>.o.u.</var>
                reſiduum totius, et
                  <var>.o.t.</var>
                ſimiliter, eo quòd
                  <var>.a.u.</var>
                ad
                  <var>.a.
                    <lb/>
                  o.</var>
                eſt ut
                  <var>.t.m.</var>
                ad
                  <var>.o.t.</var>
                vnde cognoſcemus etiam
                  <var>.o.m.</var>
                vt reſiduum
                  <var>.t.m.</var>
                & ſimiliter ag-
                  <lb/>
                gregatum
                  <var>.a.o.</var>
                cum
                  <var>.o.m.</var>
                hoc eſt
                  <var>.a.m.</var>
                & etiam
                  <var>.m.u.</var>
                reſiduum totius.</s>
              </p>
              <p>
                <s xml:id="echoid-s1244" xml:space="preserve">Cognoſcere autem proportionem totius dolij ad vrnam, vel ècontrà, cum cogni
                  <lb/>
                ta nobis fuerit proportio ingredientium in vltima miſtione ſimul cum numero vi-
                  <lb/>
                tium extractionum, & repletionum, quod ſcribit Tartalea, hoc etiam modo
                  <lb/>
                poſſumus.</s>
              </p>
              <p>
                <s xml:id="echoid-s1245" xml:space="preserve">Exempli gratia, ſi proportio
                  <var>.m.u.</var>
                ad
                  <var>.m.a.</var>
                cognita nobis fuerit, illicò ſcie-
                  <lb/>
                mus proportionem
                  <var>.a.u.</var>
                ad
                  <var>.m.u.</var>
                & cum ſciuerimus numerum vitium extractionum,
                  <lb/>
                & impletionum illicò cognoſci-
                  <lb/>
                mus multiplicitatem proportio-
                  <lb/>
                nis
                  <var>.a.u.</var>
                ad
                  <var>.m.u.</var>
                ad proportionem
                  <var>.
                    <lb/>
                    <figure xlink:label="fig-0107-02" xlink:href="fig-0107-02a" number="148">
                      <image file="0107-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0107-02"/>
                    </figure>
                  o.u.</var>
                ad
                  <var>.m.u.</var>
                quapropter propor-
                  <lb/>
                tio
                  <var>.o.u.</var>
                ad
                  <var>.m.u.</var>
                nobis cognita erit
                  <lb/>
                hoc eſt
                  <var>.a.u.</var>
                ad
                  <var>.i.u.</var>
                & ſimiliter ea, quæ eſt
                  <var>.a.u.</var>
                ad
                  <var>.a.i.</var>
                & è conuerſo ſimiliter.</s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>