Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
121 109
122 110
123 111
124 112
125 113
126 114
127 115
128 116
129 117
130 118
131 119
132 120
133 121
134 122
135 123
136 124
137 125
138 126
139 127
140 128
141 129
142 130
143 131
144 132
145 133
146 134
147 135
148 136
149 137
150 138
< >
page |< < (109) of 445 > >|
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div293" type="appendix" level="3" n="1">
              <p>
                <s xml:id="echoid-s1398" xml:space="preserve">
                  <pb o="109" rhead="THEOREM. ARIT." n="121" file="0121" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0121"/>
                cum dimidio, ut in figura
                  <var>.C.</var>
                geometrica hic ſubſcripta videre licet, et
                  <var>.q.p.</var>
                erit .21.
                  <lb/>
                Cogitemus nunc differentiam
                  <var>.d.i.</var>
                diuiſam eſſe in puncto
                  <var>.e.</var>
                ita vt eadem proportio
                  <lb/>
                ſit ipſius
                  <var>.d.e.</var>
                ad
                  <var>.e.i.</var>
                quæ ipſius
                  <var>.q.g.</var>
                ad
                  <var>.g.p.</var>
                hoc eſt vt .1 2. ad .9. quapropter
                  <var>.d.e.</var>
                erit
                  <num value="2">.
                    <lb/>
                  2.</num>
                et
                  <var>.e.i.</var>
                erit .1. cum dimidio, vt in dicta figura
                  <var>.C.</var>
                arithmetica reperiuntur eſſe dif-
                  <lb/>
                ferentiæ ipſorum antecedentium numerorum, deinde à puncto
                  <var>.e.</var>
                ducatur imagina-
                  <lb/>
                tione
                  <var>.u.e.o.</var>
                æ quidiſtans ipſi
                  <var>.q.p.</var>
                & producatur
                  <var>.q.n.</var>
                vſque ad
                  <var>.u.</var>
                vnde ita ſe habebit
                  <lb/>
                  <var>u.e.</var>
                ad
                  <var>.e.o.</var>
                ut
                  <var>.q.g.</var>
                ad
                  <var>g.p</var>
                . </s>
                <s xml:id="echoid-s1399" xml:space="preserve">quare vt
                  <var>.d.e.</var>
                ad
                  <var>.e.i.</var>
                ideo ex .15. ſexti vel .20. ſeptimi
                  <var>.n.e.</var>
                  <lb/>
                rectangulum æquale crit ipſi
                  <var>.e.f.</var>
                qua propter rectang ulum
                  <var>.q.o.</var>
                æquale erit duobus
                  <lb/>
                rectangulis
                  <var>.f.g.</var>
                et
                  <var>.g.n</var>
                : ſed cum
                  <var>.g.i.</var>
                ſit vt .6. cum dimidio, et
                  <var>.i.e.</var>
                vt .1. cum dimidio, er
                  <lb/>
                go
                  <var>.g.e.</var>
                erit ut .8. qui quidem numerus multiplicatus cum
                  <var>.q.p.</var>
                21. producit .168. ve
                  <lb/>
                rum eſt igitur quod dictum fuit, hoc eſt
                  <reg norm="quod" type="simple">ꝙ</reg>
                maximum productum ęquale ſit reliquis
                  <lb/>
                duobus.</s>
              </p>
              <figure position="here" number="165">
                <image file="0121-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0121-01"/>
              </figure>
              <figure position="here" number="166">
                <image file="0121-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0121-02"/>
              </figure>
            </div>
          </div>
        </div>
      </text>
    </echo>