Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
121 109
122 110
123 111
124 112
125 113
126 114
127 115
128 116
129 117
130 118
131 119
132 120
133 121
134 122
135 123
136 124
137 125
138 126
139 127
140 128
141 129
142 130
143 131
144 132
145 133
146 134
147 135
148 136
149 137
150 138
< >
page |< < (121) of 445 > >|
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div308" type="chapter" level="2" n="2">
            <div xml:id="echoid-div308" type="section" level="3" n="1">
              <p>
                <s xml:id="echoid-s1502" xml:space="preserve">
                  <pb o="121" rhead="DE PERSPECT." n="133" file="0133" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0133"/>
                cundum figuram quadrilateram
                  <var>.q.d.r.e</var>
                . </s>
                <s xml:id="echoid-s1503" xml:space="preserve">Communis autem ſectio ſuperficiei
                  <var>.p.t.</var>
                  <lb/>
                cum dicto plano, ſit
                  <var>.i.x.</var>
                quæ
                  <var>.i.x.</var>
                perpendicularis erit
                  <var>.s.a.</var>
                ſuperficiei orizontali ex
                  <lb/>
                19. lib. 11. quia
                  <var>.p.t.</var>
                eſt etiam orizonti perpendicularis ex .18. eiuſdem, cum
                  <var>.o.p.</var>
                ei-
                  <lb/>
                dem perpendicularis exiſtat. </s>
                <s xml:id="echoid-s1504" xml:space="preserve">Vnde
                  <var>.i.x.</var>
                erit altitudo trianguli
                  <var>.i.q.d.</var>
                & æqualis ipſi
                  <var>.
                    <lb/>
                  o.p.</var>
                ex
                  <ref id="ref-0019">.34. primi</ref>
                . </s>
                <s xml:id="echoid-s1505" xml:space="preserve">Sit deinde
                  <var>.o.l.</var>
                  <reg norm="communis" type="context">cõmunis</reg>
                ſectio ſuperficiei triangularis
                  <var>.o.a.u.</var>
                  <reg norm="cum" type="context">cũ</reg>
                  <lb/>
                ſuperficie
                  <var>.p.t.</var>
                quæ
                  <var>.o.l.</var>
                ſecando lineam
                  <var>.e.r.</var>
                in puncto
                  <var>.Z.</var>
                nobis oſtendet quantum di-
                  <lb/>
                ſtare ſeu eminens eſſe debeat latus
                  <var>.e.r.</var>
                in plano ab
                  <var>.q.d.</var>
                medio ipſius
                  <var>.z.x</var>
                . </s>
                <s xml:id="echoid-s1506" xml:space="preserve">Et quia
                  <lb/>
                præſuppoſuimus
                  <var>.p.l.</var>
                in eodem medio, inter
                  <var>.u.s.</var>
                et
                  <var>.a.n.</var>
                ideo
                  <var>.x.q.</var>
                ęqualis erit
                  <var>.x.d.</var>
                  <lb/>
                & ex .4. lib. primi
                  <var>.i.q.</var>
                ipſi
                  <var>.i.d.</var>
                et
                  <var>.e.r.</var>
                parallela ipſi
                  <var>.q.d.</var>
                ex .6. lib. 11. cum ipſa quoque
                  <lb/>
                ſit perpendicularis ſuperficiei
                  <var>.p.t.</var>
                ex
                  <ref id="ref-0020">.19. eiuſdem</ref>
                . </s>
                <s xml:id="echoid-s1507" xml:space="preserve">Hucuſque igitur in figura cor-
                  <lb/>
                porea
                  <var>.A.</var>
                prodeunt in lucem omnes cauſæ effectuum figuræ ſuperficialis
                  <var>.A.</var>
                ideſt vn
                  <lb/>
                de fiat, vt in ipſa figura ſuperficiali, triangulum
                  <var>.o.p.l.</var>
                tale conſurgat, & quid ſignifi-
                  <lb/>
                cet
                  <var>.o.</var>
                et
                  <var>.o.p.</var>
                et
                  <var>.p.l.</var>
                et
                  <var>.o.l.</var>
                & quam ob cauſam tale quoque formetur triangulum
                  <var>.i.
                    <lb/>
                  q.d.</var>
                atque in tantam altitudinem, quantam obtinet
                  <var>.o.p.</var>
                & quid ſint latera
                  <var>.i.q.</var>
                et
                  <var>.i.
                    <lb/>
                  d.</var>
                & quare erigatur
                  <var>.x.i.</var>
                parallela ipſi
                  <var>.p.o.</var>
                ab eadem
                  <var>.p.o.</var>
                tanto ſpatio diſtans, & qua
                  <lb/>
                ratione producatur à puncto
                  <var>.Z.</var>
                ipſa
                  <var>.Z.r.e.</var>
                parallela ipſi
                  <var>.q.d</var>
                .</s>
              </p>
              <p>
                <s xml:id="echoid-s1508" xml:space="preserve">Nunc obſeruandum eſt, quòd ſi planum ipſius
                  <var>.i.q.d.</var>
                in figura corporea aliquan-
                  <lb/>
                tulum inclinatum eſſet orizontem verſus, anguli
                  <var>.i.q.d.</var>
                et
                  <var>.i.d.q.</var>
                maiores exiſterent,
                  <lb/>
                quàm cum idem eſt ipſi orizonti perpendiculare, quemadmodum clarè demonſtra-
                  <lb/>
                tum fuit in .39. primi Vitelionis.</s>
              </p>
              <p>
                <s xml:id="echoid-s1509" xml:space="preserve">Non igitur rectè fit ſi in figura ſuperficiali ducatur à puncto
                  <var>.B.</var>
                parallela ipſi
                  <var>.q.d.</var>
                  <lb/>
                abſque maiori apertura angulorum
                  <var>.i.q.d.</var>
                et
                  <var>.i.d.q</var>
                .</s>
              </p>
              <figure position="here" number="180">
                <image file="0133-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0133-01"/>
                <caption xml:id="echoid-caption3" xml:space="preserve">SVPERFICIALIS.</caption>
              </figure>
            </div>
            <div xml:id="echoid-div310" type="section" level="3" n="2">
              <head xml:id="echoid-head178" xml:space="preserve">CAP. II.</head>
              <p>
                <s xml:id="echoid-s1510" xml:space="preserve">CVM verò duæ præcedentes figuræ intellectæ erunt, facilè quoque erit intel-
                  <lb/>
                ligere duas ſubſequentes
                  <var>.B.B.</var>
                in corporea quarum
                  <var>.p.l.</var>
                extra lineas
                  <var>.u.s.</var>
                et
                  <var>.a.n.</var>
                  <lb/>
                reperitur, vbi enim aduertendum erit oportere ſumere ſemper
                  <var>.p.x.</var>
                figuræ ſuperfi-
                  <lb/>
                cialis æqualem ei, quæ eſt corporeæ, & eidem ſuperficiali, adiungere
                  <var>.x.d.</var>
                æqualem
                  <lb/>
                ei, quæ eſt corporeæ, & compoſito
                  <var>.p.d.</var>
                ex dictis duabus lineis, in figura ſuperficiali,
                  <lb/>
                addere
                  <var>.d.q.</var>
                æqualem ei, quæ eſt figuræ corporeæ, deinde accipere punctum
                  <var>.l.</var>
                in fu-
                  <lb/>
                perficiali </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>