Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
131 119
132 120
133 121
134 122
135 123
136 124
137 125
138 126
139 127
140 128
141 129
142 130
143 131
144 132
145 133
146 134
147 135
148 136
149 137
150 138
151 139
152 140
153 141
154 142
155 143
156 144
157 145
158 146
159 147
160 148
< >
page |< < (126) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div308" type="chapter" level="2" n="2">
            <div xml:id="echoid-div316" type="section" level="3" n="5">
              <p>
                <s xml:id="echoid-s1548" xml:space="preserve">
                  <pb o="126" rhead="IO. BAPT. BENED." n="138" file="0138" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0138"/>
                æqualis ſit ipſi
                  <var>.b.c.</var>
                )
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0138-01a" xlink:href="fig-0138-01"/>
                  <var>o.m.</var>
                etiam
                  <var>.i.c</var>
                : et
                  <var>.f.
                    <lb/>
                  k.</var>
                vt in figura
                  <var>.F.</var>
                cla
                  <lb/>
                riſſimè patet. </s>
                <s xml:id="echoid-s1549" xml:space="preserve">Alias
                  <lb/>
                  <reg norm="autem" type="context">autẽ</reg>
                multas lineas in
                  <lb/>
                alijs figuris non
                  <reg norm="aliam" type="context">aliã</reg>
                  <lb/>
                ob
                  <reg norm="camm" type="context">cãm</reg>
                duxi,
                  <reg norm="quam" type="context">quã</reg>
                ad
                  <lb/>
                facilius
                  <reg norm="eruendas" type="context">eruẽdas</reg>
                è te-
                  <lb/>
                nebris ignorantiæ, &
                  <lb/>
                in cognitionis lucem
                  <lb/>
                proferendas horum
                  <lb/>
                effectuum cauſas, vt
                  <lb/>
                dixi.</s>
              </p>
              <div xml:id="echoid-div316" type="float" level="4" n="1">
                <figure xlink:label="fig-0137-01" xlink:href="fig-0137-01a">
                  <image file="0137-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0137-01"/>
                  <caption xml:id="echoid-caption11" xml:space="preserve">CORPOREA.</caption>
                </figure>
                <figure xlink:label="fig-0137-02" xlink:href="fig-0137-02a">
                  <image file="0137-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0137-02"/>
                  <caption xml:id="echoid-caption12" xml:space="preserve">SVPERFICIALIS.</caption>
                </figure>
                <figure xlink:label="fig-0138-01" xlink:href="fig-0138-01a">
                  <image file="0138-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0138-01"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div318" type="section" level="3" n="6">
              <head xml:id="echoid-head182" xml:space="preserve">CAP. VI.</head>
              <p>
                <s xml:id="echoid-s1550" xml:space="preserve">
                  <emph style="sc">SEd</emph>
                vtlocum altitudinis, in noſtro plano perpendiculari orizonti, & ita
                  <reg norm="locatum" type="context">locatũ</reg>
                  <unsure/>
                ,
                  <lb/>
                vt poſtremo diximus, inueniamus; </s>
                <s xml:id="echoid-s1551" xml:space="preserve">duas hîc ſubſcriptas figuras conſiderabimus
                  <var>.
                    <lb/>
                  G.</var>
                corpoream, & G. ſuperficialem, ſimiles duabus
                  <var>.E.E.</var>
                proximè præcedentibus,
                  <lb/>
                in quarum corporea ſit linea
                  <var>.b.M.</var>
                altitudinis perpendicularis orizonti. </s>
                <s xml:id="echoid-s1552" xml:space="preserve">Quare ſi
                  <lb/>
                deſiderabis inuenire in noſtro plano ſitum puncti
                  <var>.M.</var>
                ideſt punctum radij
                  <var>.o.M.</var>
                vi-
                  <lb/>
                ſualis in quo ipſe radius à plano eſt diuiſus, quod ſit
                  <var>.R.</var>
                quamuis extra
                  <reg norm="triangulum" type="context">triangulũ</reg>
                  <lb/>
                  <var>i.q.d.</var>
                tibi imaginatione confige ductam eſſe lineam
                  <var>.p.b.</var>
                quæ erit ſectio commu-
                  <lb/>
                nis orizontis cum ſuperficie
                  <var>.o.p.b.M.</var>
                quæ ſuperficies erit perpendicularis ipſi ori-
                  <lb/>
                zonti ex .18. lib 11. </s>
                <s xml:id="echoid-s1553" xml:space="preserve">Quòd autemnon minus
                  <var>.o.p.</var>
                quàm.M.b. ſit in vna eademq́ue
                  <lb/>
                ſuperficie dubitandum non eſt, quia ſi imaginabimur ductam eſſe lineam
                  <var>.p.M.</var>
                ha
                  <lb/>
                bebimus triangulum
                  <var>.o.p.b.</var>
                cum triangulo
                  <var>.M.b.p.</var>
                communibus partibus in vna ea-
                  <lb/>
                demq́ue ſuperficie conſtantem, vt triangulum quoque
                  <var>.o.p.M.</var>
                cum triangulo
                  <var>M.b.</var>
                  <lb/>
                o & triangulum
                  <var>.o.p.b.</var>
                cum triangulo
                  <var>.o.p.M.</var>
                & triangulum
                  <var>.M.b.p.</var>
                cum triangulo
                  <var>.
                    <lb/>
                  M.b.o</var>
                . </s>
                <s xml:id="echoid-s1554" xml:space="preserve">Vnde cum quilibet triangulus in vnica tantum ſuperficie ſit ex .2. lib. 11. ſe-
                  <lb/>
                quetur ſuperficiem
                  <var>.o.p.b.M.</var>
                planam eſſe, & vnicam, cuius communis ſectio cum no-
                  <lb/>
                ſtro plano ſit. θ.K.R. quæ perpendicularis orizonti exiſtet ex .19. lib. 11. eritq́ue pa-
                  <lb/>
                rallela ipſi
                  <var>.i.x.</var>
                ex .6. eiuſdem. </s>
                <s xml:id="echoid-s1555" xml:space="preserve">Imaginare nunc erectam eſſe
                  <var>.m.T.</var>
                æqualem ipſi
                  <var>.
                    <lb/>
                  b.M.</var>
                orizonti perpendicularem, quæ extenſa erit in ſuperficie
                  <var>.p.t.</var>
                quod ex ſe ad
                  <lb/>
                conſiderandum admodum facilè, clarumq́ue exiſtit, reducendo ad impoſſibilia
                  <lb/>
                quemlibet hæc negare volentem. </s>
                <s xml:id="echoid-s1556" xml:space="preserve">Imaginemur quoque ductam eſſe lineam
                  <var>.M.
                    <lb/>
                  T.</var>
                quæ
                  <var>.b.m.</var>
                ex .33. primi erit parallela, quia
                  <var>.m.T.</var>
                ęqualis
                  <var>.b.M.</var>
                parallela eſt
                  <lb/>
                ipſi
                  <var>.b.M.</var>
                ex .6. lib. 11. præter hæc
                  <var>.b.m.</var>
                parallela eſt ipſi
                  <var>.q.d.</var>
                quia ſic fuit ducta
                  <lb/>
                ſuperius, vnde
                  <var>.M.T.</var>
                parallela erit ipſi
                  <var>.q.d.</var>
                ex .9. vndecimi, & obid perpendi-
                  <lb/>
                cularis erit ſuperficiei
                  <var>.b.t.</var>
                ex .8. eiuſdem. </s>
                <s xml:id="echoid-s1557" xml:space="preserve">Nunc ſit
                  <var>.R.V.</var>
                communis ſectio trian-
                  <lb/>
                guli
                  <var>.o.M.T.</var>
                cum noſtro plano, vnde
                  <var>.R.V.</var>
                perpendicularis erit ſuperficiei
                  <var>.p.t.</var>
                  <lb/>
                ex .19. lib. 11. quam ob cauſam parallela erit ipſi
                  <var>.q.d.</var>
                ex .6. aut ex .9. eiuſdem
                  <lb/>
                quia ex .6. dicta, parallela eſt ipſi
                  <var>.M.T</var>
                . </s>
                <s xml:id="echoid-s1558" xml:space="preserve">Atſi
                  <var>.R.V.</var>
                parallela eſt ipſi
                  <var>.q.d.</var>
                  <lb/>
                etiam
                  <var>.f.K.</var>
                probatum iam fuit parallelam eſſe eidem, ergo
                  <var>.R.V.</var>
                parallela erit
                  <lb/>
                ipſi
                  <var>.K.f.</var>
                ex .30. primi, </s>
                <s xml:id="echoid-s1559" xml:space="preserve">Vnde ex .34. æqualis erit ipſi
                  <var>.K.f</var>
                . </s>
                <s xml:id="echoid-s1560" xml:space="preserve">Accedamus nunc
                  <lb/>
                ad
                  <reg norm="figuram" type="context">figurã</reg>
                  <var>.G.</var>
                  <reg norm="extructam" type="context">extructã</reg>
                ſupra figuram
                  <var>.E.</var>
                ſuperficialem, & erigamus
                  <var>.m.T.</var>
                perpendi-
                  <lb/>
                cularem ipſi
                  <var>.m.p.</var>
                ſed æqualem perfectæ altitudini, & ducamus
                  <var>.T.o.</var>
                vt ſecet li-
                  <lb/>
                neam
                  <var>.i.x.</var>
                in puncto
                  <var>.V.</var>
                ab ipſo ducentes
                  <var>.V.R.</var>
                parallelam ipſi
                  <var>.q.d.</var>
                ducendo de- </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>