Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
121 109
122 110
123 111
124 112
125 113
126 114
127 115
128 116
129 117
130 118
131 119
132 120
133 121
134 122
135 123
136 124
137 125
138 126
139 127
140 128
141 129
142 130
143 131
144 132
145 133
146 134
147 135
148 136
149 137
150 138
< >
page |< < (137) of 445 > >|
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div308" type="chapter" level="2" n="2">
            <div xml:id="echoid-div328" type="section" level="3" n="12">
              <p>
                <pb o="137" rhead="DE PERSPECT." n="149" file="0149" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0149"/>
                <s xml:id="echoid-s1652" xml:space="preserve">1. 2. </s>
                <s xml:id="echoid-s1653" xml:space="preserve">Vnde huiuſmodi regula tunc bona redditur, quando
                  <var>T.Q.</var>
                æqualis eſt ipſi .œ.
                  <lb/>
                Q. ideſt medietati ipſius
                  <var>.D.B.</var>
                at verò ſi æqualis non eſſet hoc minime ſequeretur,
                  <lb/>
                vt facilè patet. </s>
                <s xml:id="echoid-s1654" xml:space="preserve">Quòd verò .2.
                  <var>R.Z.</var>
                &. ſint benè diſpoſita, dubitandum non eſt, quia
                  <lb/>
                punctum
                  <var>.i.</var>
                meæ hic ſubſcriptæ figuræ, quod coreſpondet K. eius ſiguræ adeò diſtat
                  <lb/>
                a medio
                  <var>.R.X.</var>
                trianguli
                  <var>.R.B.D.</var>
                vt .2. cum .1. 2. dicto medio
                  <var>.R.X.</var>
                ex .6. </s>
                <s xml:id="echoid-s1655" xml:space="preserve">Vndecimi fit
                  <lb/>
                parallela. </s>
                <s xml:id="echoid-s1656" xml:space="preserve">Idem de reliquis dico. quod manifeſtè cognoſci poteſt, ab eo, quod in
                  <lb/>
                ſuperius poſitis figuris corporeis dixi. </s>
                <s xml:id="echoid-s1657" xml:space="preserve">Huiuſmodi modus ducendi res in perſpectiua,
                  <lb/>
                non ſolum à Gallis, ſed à Germanis etiam in vſum reducitur. </s>
                <s xml:id="echoid-s1658" xml:space="preserve">Sed quia ad hæc
                  <reg norm="vſque" type="simple">vſq;</reg>
                  <lb/>
                tempora eiuſdem perfectionis ratio, quam ego ſuperius propoſui,
                  <reg norm="nondum" type="context">nõdum</reg>
                in lucem
                  <lb/>
                emerſit, factum fuit, vt
                  <reg norm="errorum" type="context">errorũ</reg>
                laqueis irretirentur, ſumentes
                  <var>.T.Q.</var>
                modo maiorem,
                  <lb/>
                modo minorem medietate lateris
                  <var>.D.B</var>
                . </s>
                <s xml:id="echoid-s1659" xml:space="preserve">Cum hunc igitur modum hic Autor
                  <lb/>
                vniuerſalem eſſe putet, labitur in errorem, cum debuiſſet longitudinem ipſius
                  <var>.T.Q.</var>
                  <lb/>
                debere eſſe æqualem medietati ipſius
                  <var>.D.B.</var>
                proferre. </s>
                <s xml:id="echoid-s1660" xml:space="preserve">Aſſerit deinde diſtantiam ip-
                  <lb/>
                ſius
                  <var>.T.Q.</var>
                à latere
                  <var>.B.D.</var>
                æ qualem eſſe debere lateri
                  <var>.C.D.</var>
                quod neceſſarium non eſt,
                  <lb/>
                quia in quibuslibet diſtantijs, iuſta operatio fieri poteſt, quemadmodum in ſubſcri-
                  <lb/>
                pta hîc figura facile patet, ideſt, quòd quibuſcunque modis
                  <var>.c.D.</var>
                æqualis remaneat
                  <lb/>
                ipſi .1. 2. & ſic interualla, quæ
                  <reg norm="per" type="simple">ꝑ</reg>
                tranſuerſum aguntur
                  <reg norm="vſque" type="simple">vſq;</reg>
                ad
                  <reg norm="medium" type="context">mediũ</reg>
                trianguli
                  <var>.D.R.B.</var>
                  <lb/>
                Neque etiam probandus eſt auctor ille, cum pro oculo, ſuum
                  <var>.T.</var>
                loco
                  <var>.Q.</var>
                à me poſi-
                  <unsure/>
                  <lb/>
                ti, ponit, cum is locus ſit verus ſitus pedis eius quireſpicit, & non oculi. </s>
                <s xml:id="echoid-s1661" xml:space="preserve">Quòd
                  <reg norm="autem" type="context">autẽ</reg>
                  <lb/>
                Auctor iſte, modo vniuerſali intelligat, vt iam diximus,
                  <reg norm="conſideretur" type="context">cõſideretur</reg>
                figura tertij mo
                  <lb/>
                di primi cap. tertiæ partis, in qua ſuum oculum (vt ita dicam) ponit in
                  <var>.o.</var>
                altius ſeu
                  <lb/>
                diſtans à rectitudine lateris
                  <var>.c.d.</var>
                plus quam ſit totum latus
                  <var>.d.b</var>
                .</s>
              </p>
            </div>
            <div xml:id="echoid-div331" type="section" level="3" n="13">
              <head xml:id="echoid-head191" xml:space="preserve">AD EVNDEM IACOBVM.
                <lb/>
              CAP. XIII.</head>
              <p>
                <s xml:id="echoid-s1662" xml:space="preserve">
                  <emph style="sc">TVas</emph>
                accepiliteras omnis humanitatis & officij plenas, in quibus requiris cau-
                  <lb/>
                ſam, quæ me in alijs meis literis impulit ad
                  <reg norm="dicendum" type="context">dicendũ</reg>
                ,
                  <reg norm="angulum" type="context">angulũ</reg>
                  <var>.q.o.u.</var>
                modo ma-
                  <lb/>
                iorem, modo verò minorem futurum angulo
                  <var>.q.p.u.</var>
                meæ figuræ corporeæ
                  <var>.A.</var>
                hanc
                  <lb/>
                igitur ob cauſam imagineris in ſubſcripta hîc figura duo triangula
                  <var>.q.o.u.</var>
                et
                  <var>.q.p.u.</var>
                  <lb/>
                quorum
                  <var>.q.p.u.</var>
                perpendiculariter ſit ſuper ſuperficie trianguli
                  <var>.q.o.p.</var>
                collocatum,
                  <lb/>
                præcisè vt in mea figura corporea
                  <var>.A.</var>
                ſuperficies verò trianguli
                  <var>.q.o.p.</var>
                ſit exempli-
                  <lb/>
                gratia
                  <var>.V.M.</var>
                & trian-
                  <lb/>
                guli
                  <var>.u.o.p.</var>
                ſit
                  <var>.V.D.</var>
                  <lb/>
                  <figure xlink:label="fig-0149-01" xlink:href="fig-0149-01a" number="203">
                    <image file="0149-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0149-01"/>
                  </figure>
                quarum
                  <reg norm="communis" type="context">cõmunis</reg>
                ſe-
                  <lb/>
                ctio ſit
                  <var>.V.p.o.x.</var>
                non
                  <lb/>
                eſt enim
                  <reg norm="dubitandum" type="context">dubitãdum</reg>
                  <lb/>
                quin triangulum
                  <var>.q.
                    <lb/>
                  p.u.</var>
                ſit perpendicula-
                  <lb/>
                re triangulo
                  <var>.q.o.p.</var>
                  <lb/>
                  <reg norm="cum" type="context">cũ</reg>
                hoc ex .18. lib. 11.
                  <lb/>
                Eucli. perpendicula-
                  <lb/>
                re ſit ſuperficiei
                  <var>.a.s.</var>
                  <lb/>
                in qua reperitur
                  <reg norm="trian- gulum" type="context">triã-
                    <lb/>
                  gulum</reg>
                  <var>.q.p.u.</var>
                & hoc
                  <lb/>
                ex linea
                  <var>.o.p.</var>
                perpendiculari dictæ ſuperficiei
                  <var>.a.s</var>
                . </s>
                <s xml:id="echoid-s1663" xml:space="preserve">Nunc dico angulum
                  <var>.q.o.u.</var>
                modo
                  <lb/>
                maiorem, modo minorem eſſe angulo
                  <var>.q.p.u</var>
                . </s>
                <s xml:id="echoid-s1664" xml:space="preserve">Notiſſimum igitur primum nobis </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>