Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
171 159
172 160
173 161
174 162
175 163
176 164
177 165
178 166
179 167
180 168
181 169
182 170
183 171
184 172
185 173
186 174
187 175
188 176
189 177
190 178
191 179
192 180
193 181
194 182
195 183
196 184
197 185
198 186
199 187
200 188
< >
page |< < (143) of 445 > >|
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div340" type="chapter" level="2" n="3">
            <div xml:id="echoid-div342" type="section" level="3" n="2">
              <p>
                <s xml:id="echoid-s1717" xml:space="preserve">
                  <pb o="143" rhead="DE MECHAN." n="155" file="0155" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0155"/>
                ſtat. </s>
                <s xml:id="echoid-s1718" xml:space="preserve">Et quamuis appellem latus
                  <var>.B.C.</var>
                orizontale, ſupponens illud angulum rectum
                  <lb/>
                cum
                  <var>.C.O.</var>
                facere, vnde angulus
                  <var>.C.B.Q.</var>
                fit vt minor ſit recto, ob quantitatem vnius
                  <lb/>
                anguli ęqualis ei, quem duæ
                  <var>.C.O.</var>
                et
                  <var>.B.Q.</var>
                in centro regionis
                  <reg norm="elementaris" type="context">elemẽtaris</reg>
                  <reg norm="conſtituunt" type="context">conſtituũt</reg>
                ,
                  <lb/>
                hoc tamen nihil refert, cum dictus angulus inſenſibilis ſit magnitudinis. </s>
                <s xml:id="echoid-s1719" xml:space="preserve">Ab iſtis au-
                  <lb/>
                tem rationibus elicere poſſumus, quod ſi punctus
                  <var>.u.</var>
                erit ex æquo medius inter cen-
                  <lb/>
                trum
                  <var>.B.</var>
                & extremum
                  <var>.C.</var>
                pondus
                  <var>.F.</var>
                aut
                  <var>.M.</var>
                pendebit, aut nitetur pro medietate dicto
                  <lb/>
                centro
                  <var>.B.</var>
                & ſi dictum
                  <var>.u.</var>
                erit propius
                  <var>.B.</var>
                quam puncto
                  <var>.C.</var>
                pendebit ab ipſo, aut nitetur
                  <lb/>
                ipſi amplius
                  <reg norm="quam" type="context">quã</reg>
                exmedietate, & ſi magis verſus
                  <var>.C.</var>
                minus
                  <reg norm="quam" type="context">quã</reg>
                ex medietate
                  <reg norm="nitetur" type="simple">nitet̃</reg>
                .</s>
              </p>
            </div>
            <div xml:id="echoid-div344" type="section" level="3" n="3">
              <head xml:id="echoid-head199" style="it" xml:space="preserve">Quòd quantit as cuiuſlibet ponderis, aut uirtus mouens re-
                <lb/>
              ſpectu alterius quantitatis cognoſcatur beneficio
                <lb/>
              perpendicularium ductarum à centro
                <lb/>
              libr & ad line am inclinationis.</head>
              <head xml:id="echoid-head200" xml:space="preserve">CAP. III.</head>
              <p>
                <s xml:id="echoid-s1720" xml:space="preserve">EX ijs, quæ à nobis hucuſque ſunt dicta, facilè intelligi poteſt,
                  <reg norm="quod" type="simple">ꝙ</reg>
                quantitas
                  <var>.B.u.</var>
                  <lb/>
                quæ ferè perpendicularis eſt à centro
                  <var>.B.</var>
                ad lineam
                  <var>.F.u.</var>
                inclinationis, ea eſt,
                  <lb/>
                  <handwritten xlink:label="hd-0155-01" xlink:href="hd-0155-01a" number="3"/>
                quæ nos ducit in cognitionem quantitatis virtutis ipſius
                  <var>.F.</var>
                in huiuſmodi ſitu, conſti
                  <lb/>
                tuens videlicet linea
                  <var>.F.u.</var>
                cum brachio
                  <var>.F.B.</var>
                angulum acutum
                  <var>.B.F.u</var>
                . </s>
                <s xml:id="echoid-s1721" xml:space="preserve">Vt hoc tamen
                  <lb/>
                melius intelligamus, imaginemur libram
                  <var>.b.o.a.</var>
                fixam in centro
                  <var>.o.</var>
                ad. cuius etrema
                  <lb/>
                ſint appenſa duo pondera, aut duæ virtutes mouentes
                  <var>.e.</var>
                et
                  <var>.c.</var>
                ita tamen
                  <reg norm="quod" type="simple">ꝙ</reg>
                linea incli-
                  <lb/>
                nationis
                  <var>.e.</var>
                ideſt
                  <var>.b.e.</var>
                faciat angulum rectum cum
                  <var>.o.b.</var>
                in puncto
                  <var>.b.</var>
                linea verò inclina
                  <lb/>
                tionis
                  <var>.c.</var>
                ideſt
                  <var>.a.c.</var>
                faciat angulum acutum, aut obtuſum cum
                  <var>.o.a.</var>
                in puncto
                  <var>.a</var>
                . </s>
                <s xml:id="echoid-s1722" xml:space="preserve">Imagi-
                  <lb/>
                nemur ergo lineam
                  <var>.o.t.</var>
                perpendicularem lineæ
                  <var>.c.a.</var>
                inclinationis, vnde
                  <var>.o.t.</var>
                minor
                  <lb/>
                erit
                  <var>.o.a.</var>
                ex .18. primi Euclidis. ſecetur deinde imaginatione
                  <var>o.a.</var>
                in puncto
                  <var>.i.</var>
                ita ut
                  <lb/>
                  <var>o.i.</var>
                æqualis. </s>
                <s xml:id="echoid-s1723" xml:space="preserve">ſit
                  <var>.o.t.</var>
                & puncto
                  <var>.i.</var>
                appenſum ſit pondus æquale ipſi
                  <var>.c.</var>
                cuius inclinationis
                  <lb/>
                linea parallela ſit lineæ inclinationis ponderis
                  <var>.e.</var>
                ſupponendo tamen pondus aut vir
                  <lb/>
                tutem
                  <var>.c.</var>
                ea ratione maiorem eſſe ea, quæ eſt
                  <var>.e.</var>
                qua
                  <var>.b.o.</var>
                maior eſt
                  <var>.o.t.</var>
                abſque dubio
                  <lb/>
                ex .6. lib. primi Archi. de ponderibus
                  <var>.b.o.i.</var>
                non mouebitur ſitu, ſed ſi loco
                  <var>.o.i.</var>
                imagi
                  <lb/>
                nabimur
                  <var>.o.t.</var>
                conſolidatam cum
                  <var>.o.b.</var>
                & per lineam
                  <var>.t.c.</var>
                attractam virtute
                  <var>.c.</var>
                ſimiliter
                  <lb/>
                quoque continget ut
                  <var>b.o.</var>
                t; </s>
                <s xml:id="echoid-s1724" xml:space="preserve">communi quadam ſcientia, non moueatur ſi tu. </s>
                <s xml:id="echoid-s1725" xml:space="preserve">Eſt ergo
                  <lb/>
                  <handwritten xlink:label="hd-0155-02" xlink:href="hd-0155-02a" number="4"/>
                quod propoſuimus verum quantitatem alicuius ponderis reſpectu ad eam, quæ eſt
                  <lb/>
                alterius debere depræhendi à perpendicularibus, quæ à centro libræ ad lineas incli
                  <lb/>
                nationis exiliunt. </s>
                <s xml:id="echoid-s1726" xml:space="preserve">Hinc autem innoteſcit facillimè, quantum vigoris, & vis pondus,
                  <lb/>
                aut virtus
                  <var>.c.</var>
                ad angulum rectum cum
                  <var>.o.a.</var>
                minimè trahens, amitttat. </s>
                <s xml:id="echoid-s1727" xml:space="preserve">Hinc quoque co
                  <lb/>
                rollarium quoddam ſequetur, quò d quantò propinquius erit centrum
                  <var>.o.</var>
                libræ cen-
                  <lb/>
                tro regionis elementaris, tantò quo que minus erit graue.</s>
              </p>
              <figure position="here" number="211">
                <image file="0155-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0155-01"/>
              </figure>
            </div>
          </div>
        </div>
      </text>
    </echo>