Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
131 119
132 120
133 121
134 122
135 123
136 124
137 125
138 126
139 127
140 128
141 129
142 130
143 131
144 132
145 133
146 134
147 135
148 136
149 137
150 138
151 139
152 140
153 141
154 142
155 143
156 144
157 145
158 146
159 147
160 148
< >
page |< < (146) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div340" type="chapter" level="2" n="3">
            <div xml:id="echoid-div348" type="section" level="3" n="5">
              <p>
                <s xml:id="echoid-s1749" xml:space="preserve">
                  <pb o="146" rhead="IO. BAPT. BENED." n="158" file="0158" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0158"/>
                huius effectus conuerſo, ideſt, vt quemadmodum nunc ſupponuntur
                  <var>.o.</var>
                et
                  <var>.u.</var>
                eſſe duo
                  <lb/>
                centra quibus
                  <reg norm="ſuſtinetur" type="simple">ſuſtinet̃</reg>
                pondus
                  <var>.e.</var>
                ipſius
                  <var>.n.</var>
                imaginemur
                  <var>.n.</var>
                eſſe quoddam centrum à
                  <lb/>
                quo pendeant duo pondera
                  <var>.o.</var>
                et
                  <var>.u.</var>
                ſic inuicem proportionata, ut ſunt
                  <var>.u.i.</var>
                et
                  <var>.i.o.</var>
                  <lb/>
                certe horum ponderum cauſa ſtatera
                  <var>.o.s.</var>
                quam vectem appellabamus à nulla parte
                  <lb/>
                inclinabitur. </s>
                <s xml:id="echoid-s1750" xml:space="preserve">Redeuntes nunc ad propoſitum, dicemus
                  <reg norm="quod" type="simple">ꝙ</reg>
                annitente pondere ipſius
                  <var>.
                    <lb/>
                  n.</var>
                minus ad
                  <var>.u.</var>
                quam ad
                  <var>.o.</var>
                ideſt ad
                  <var>.t.</var>
                minori vi opus erit in
                  <var>.u.</var>
                quàm in
                  <var>.t.</var>
                ad attollen-
                  <lb/>
                dum pondus ipſius
                  <var>.n.</var>
                & ſic per conſequens quantò longius erit punctum
                  <var>.u.</var>
                ab
                  <var>.t.</var>
                tan
                  <lb/>
                tò minori quoque vi egebit, & conſequenter quando vis, aut reſiſtentia in
                  <var>.u.</var>
                ita pro
                  <lb/>
                portionata erit illi, quæ eſt ipſius
                  <var>.o.</var>
                vt eſt
                  <var>.o.i.</var>
                ad
                  <var>.i.u.</var>
                vectis non mouebitur. </s>
                <s xml:id="echoid-s1751" xml:space="preserve">Sed quan
                  <lb/>
                do erit proportio maior, reſiſtentiæ ipſius
                  <var>.u.</var>
                ad eam, quæ eſt ipſius
                  <var>.o.</var>
                ea, quæ eſt
                  <var>.o.
                    <lb/>
                  i.</var>
                ad
                  <var>.i.u.</var>
                </s>
                <s xml:id="echoid-s1752" xml:space="preserve">tunc vectis à par-
                  <lb/>
                teipſius
                  <var>.u.s.</var>
                eleuabitur, ſi
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0158-01a" xlink:href="fig-0158-01"/>
                vero proportio minor eſſet
                  <lb/>
                quàm.o.i. ad
                  <var>.i.u.</var>
                </s>
                <s xml:id="echoid-s1753" xml:space="preserve">tunc ve-
                  <lb/>
                ctis ab eadem parte depri-
                  <lb/>
                metur.</s>
              </p>
              <div xml:id="echoid-div348" type="float" level="4" n="1">
                <figure xlink:label="fig-0157-01" xlink:href="fig-0157-01a">
                  <image file="0157-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0157-01"/>
                </figure>
                <figure xlink:label="fig-0158-01" xlink:href="fig-0158-01a">
                  <image file="0158-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0158-01"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div350" type="section" level="3" n="6">
              <head xml:id="echoid-head205" style="it" xml:space="preserve">De ratione cuiuſdam uis adauctæ.</head>
              <head xml:id="echoid-head206" xml:space="preserve">CAP. VI.</head>
              <p>
                <s xml:id="echoid-s1754" xml:space="preserve">QVibuſdam in locis vtuntur
                  <reg norm="quidam" type="context">quidã</reg>
                  <reg norm="quodam" type="context">quodã</reg>
                  <reg norm="inſtrumento" type="context">inſtrumẽto</reg>
                piſtorio ad
                  <reg norm="ſubigendam" type="context context">ſubigẽdã</reg>
                pa-
                  <lb/>
                ſtam, vnius tantum hominis ui adhibita, quæ quidem machina cum mihi di-
                  <lb/>
                gna contemplatione eſſe videatur, eius aliquam rationem proponere volui, pro cu-
                  <lb/>
                ius deſcriptione imaginemur planum, in quo ſedet ille, qui voluit paſtam, & in quo
                  <lb/>
                ipſa paſta eſt repoſita
                  <var>.T.S.D.</var>
                & triangulum
                  <var>.T.A.S.</var>
                immobile perpendiculare-
                  <lb/>
                q́ue ſuperficiei dicti plani, angulo autem
                  <var>.A.</var>
                coniunctum lignum
                  <var>.A.E.</var>
                vt ſemidiame
                  <lb/>
                trum mobilem, & æqualem perpendiculari ipſius trianguli, </s>
                <s xml:id="echoid-s1755" xml:space="preserve">unde
                  <var>.A.</var>
                loco centri erit
                  <lb/>
                et
                  <var>.D.O.</var>
                ſit ſemidiameter, qui paſtam contundit, & ab eius extremo
                  <var>.O.</var>
                (quod
                  <var>.O.</var>
                  <lb/>
                quando
                  <var>.D.O.</var>
                orizontalis eſt, in baſi dicti trianguli reperitur) veniat lignum
                  <var>.O.V.</var>
                  <lb/>
                quod cum
                  <var>.A.V.</var>
                ſit æquale perpendiculari imaginatæ ab angulo
                  <var>.A.</var>
                baſi
                  <var>.T.S.</var>
                  <reg norm="deno- datum" type="context">deno-
                    <lb/>
                  datũ</reg>
                  <reg norm="tantum" type="wordlist/context">tñ</reg>
                utvulgo
                  <reg norm="dicitur" type="simple">dicit̃</reg>
                ſeu flexile in
                  <var>.O.</var>
                & in
                  <var>.V.</var>
                vt elleuare
                  <reg norm="atque" type="simple">atq;</reg>
                deprimere ſemidiame
                  <lb/>
                trum
                  <var>.D.O.</var>
                poſſit, et
                  <var>.V.O.</var>
                ſit æqualis
                  <var>.A.V.</var>
                et
                  <var>.V.</var>
                medium ſit inter
                  <var>.A.</var>
                et
                  <var>.E.</var>
                vnde
                  <var>.A.V.</var>
                  <lb/>
                cum
                  <var>.O.V.</var>
                æquales erunt
                  <var>.A.E.</var>
                ſunt deinde duo ligna
                  <reg norm="perpendicularia" type="context">perpẽdicularia</reg>
                ab
                  <var>.A.</var>
                ad baſim
                  <lb/>
                fixa, & immobilia inter ſe adeò diſtantia, vt inter ipſa
                  <reg norm="pertranſeant" type="context context">pertrãſeãt</reg>
                  <var>.O.V.</var>
                et
                  <var>.D.O.</var>
                ſupra
                  <lb/>
                & infra, ne deuiet ſemidiametrum
                  <var>.D.O</var>
                . </s>
                <s xml:id="echoid-s1756" xml:space="preserve">In extremitate deinde ipſius
                  <var>.E.</var>
                ſit lignum
                  <lb/>
                quoddam tenue, vt digitus polex, ad angulos rectos cum
                  <var>.A.E.</var>
                quod ab aliquo, qui
                  <lb/>
                antedictam machinam ſtet, manibus teneatur, qui quidem homo idipſum lignum,
                  <lb/>
                ideſt ſemidiametrum
                  <var>.A.E.</var>
                à ſuperficie trianguli dicti, ad ſe trahendo, & deinde ver
                  <lb/>
                ſus eundem triangulum impellendo, vim quandam maximam mediante ſemidia
                  <lb/>
                metro
                  <var>.D.O.</var>
                ſuper paſtam excitat.</s>
              </p>
              <p>
                <s xml:id="echoid-s1757" xml:space="preserve">Pro cuius rei contemplatione volo vt ſecundam hanc ſubſcriptam figuram
                  <var>.b.a.
                    <lb/>
                  u.x.</var>
                imaginemur, in qua
                  <var>.u.</var>
                exprimat
                  <var>.A.</var>
                primæ figuræ, &
                  <var>.a.</var>
                denotet
                  <var>.O.</var>
                &
                  <var>.o.V.</var>
                &
                  <var>.x.
                    <lb/>
                  E.</var>
                imaginemur etiam
                  <var>.u.a.</var>
                baſem trianguli
                  <var>.a.u.o.</var>
                cui
                  <var>.o.t.</var>
                perpendicularis dictæ baſi
                  <var>.
                    <lb/>
                  u.a.</var>
                addatur. </s>
                <s xml:id="echoid-s1758" xml:space="preserve">
                  <reg norm="Hucuſque" type="simple">Hucuſq;</reg>
                igitur
                  <var>.u.o.</var>
                æqualis erit
                  <var>.o.x.</var>
                & ipſi
                  <var>.o.a.</var>
                imaginemur etiam
                  <var>.a.o.</var>
                  <lb/>
                vſque ad
                  <var>.b.</var>
                ita productam vt
                  <var>.o.b.</var>
                æqualis ſit
                  <var>.o.a.</var>
                ponamus etiam pondus in
                  <var>.a.</var>
                impel- </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>