Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
171 159
172 160
173 161
174 162
175 163
176 164
177 165
178 166
179 167
180 168
181 169
182 170
183 171
184 172
185 173
186 174
187 175
188 176
189 177
190 178
191 179
192 180
193 181
194 182
195 183
196 184
197 185
198 186
199 187
200 188
< >
page |< < (148) of 445 > >|
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div340" type="chapter" level="2" n="3">
            <div xml:id="echoid-div350" type="section" level="3" n="6">
              <pb o="148" rhead="IO. BABPT. BENED." n="160" file="0160" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0160"/>
            </div>
            <div xml:id="echoid-div352" type="section" level="3" n="7">
              <head xml:id="echoid-head207" style="it" xml:space="preserve">De quibuſdam erroribus Nicolai Tartaleæ circa pondera
                <lb/>
              corporum & eorum motus, quorum aliqui deſumpti
                <lb/>
              fuerunt à fordano ſcriptore quodam antiquo.</head>
              <head xml:id="echoid-head208" xml:space="preserve">CAP. VII.</head>
              <p>
                <s xml:id="echoid-s1761" xml:space="preserve">CVm magis amici veritatis eſſe debeamus quàm cuiuſquam hominis, quemad-
                  <lb/>
                modum Ariſto. ſcribit, detegam hoc loco quoſdam errores Nicolai Tartaleę
                  <lb/>
                de ponderibus corporum, & velocitatibus motuum localium. </s>
                <s xml:id="echoid-s1762" xml:space="preserve">Et primum decipitur
                  <lb/>
                is in .8. lib. ſuarum diuerſarum inuentionum in ſecunda propoſitione, cum non ani-
                  <lb/>
                maduerterit quanti momenti ſint extrinſecæ reſiſtentiæ.</s>
              </p>
              <p>
                <s xml:id="echoid-s1763" xml:space="preserve">Subiectum quoque tertiæ propoſitionis eſt malè demonſtratum, quia idem pla-
                  <lb/>
                nè ex eius demonſtratione iam dicta corporibus hætereogeneis, aut figura diuerſis
                  <lb/>
                contingeret, quod ad velocitates attinet.</s>
              </p>
              <p>
                <s xml:id="echoid-s1764" xml:space="preserve">In quarta propoſitione, quod ad
                  <reg norm="diſputandum" type="context context">diſputãdũ</reg>
                proponit
                  <reg norm="non" type="context">nõ</reg>
                concludit melius. </s>
                <s xml:id="echoid-s1765" xml:space="preserve">
                  <reg norm="autem" type="context">autẽ</reg>
                id
                  <lb/>
                ab eo
                  <reg norm="ſequitur" type="simple">ſequit̃</reg>
                , quod Archimedes in .6. propoſitione lib. primi de
                  <reg norm="ponderibus" type="context">põderibus</reg>
                  <reg norm="probauit" type="simple">ꝓbauit</reg>
                .</s>
              </p>
              <handwritten number="8"/>
              <p>
                <s xml:id="echoid-s1766" xml:space="preserve">Sed in ſecunda parte quintę propoſitionis non uidet
                  <reg norm="quod" type="simple">ꝙ</reg>
                uigore ſitus eo modo, quo
                  <lb/>
                ipſe diſputat, nulla elicitur ponderis differentia. </s>
                <s xml:id="echoid-s1767" xml:space="preserve">quia ſi corpus
                  <var>.B.</var>
                deſcendere debet
                  <lb/>
                per arcum
                  <var>.i.l.</var>
                corpus
                  <var>.A.</var>
                aſcendere debet per arcum
                  <var>.u.s.</var>
                æqualem, & ſimilem. eadem
                  <lb/>
                quoque ratione ſituatum, vt eſt arcus
                  <var>.i.l.</var>
                vnde vt eſt facilè corpori
                  <var>.B.</var>
                deſcendere
                  <lb/>
                per arcum
                  <var>.i.l.</var>
                difficile ita erit corpori
                  <var>.A.</var>
                aſcendere per arcum
                  <var>.u.s</var>
                . </s>
                <s xml:id="echoid-s1768" xml:space="preserve">Hęc autem qnin
                  <lb/>
                ta propoſitio Tartaleæ eſt ſecuuda quæſtio à Iordano propoſita.</s>
              </p>
              <p>
                <s xml:id="echoid-s1769" xml:space="preserve">Quòd autem ad primum corollarium dictæ propoſitionis attinet, verum ille qui
                  <lb/>
                dem ſcribit, eius tamen effectus cauſa & à Iordano prius, & ab ipſo poſtea citata, na-
                  <lb/>
                tura ſua vera non eſt. </s>
                <s xml:id="echoid-s1770" xml:space="preserve">quia vera cauſa per ſe ab eo oritur,
                  <reg norm="quod" type="simple">ꝙ</reg>
                à centro libræ dependeat
                  <lb/>
                vt primo cap. huius tractatus oſtendi. </s>
                <s xml:id="echoid-s1771" xml:space="preserve">Secundum verò corollarium falſum eſſe, ijs ra
                  <lb/>
                tionibus quas nunc ſubiungam, patebit. </s>
                <s xml:id="echoid-s1772" xml:space="preserve">Imaginemur
                  <var>.u.</var>
                pro centro regionis ele-
                  <lb/>
                mentaris, & libram
                  <var>.b.o.a.</var>
                obliquam reſpectu ad
                  <var>.u.</var>
                & brachijs æqualibus
                  <reg norm="conſtantem" type="context">conſtãtem</reg>
                ,
                  <lb/>
                & pondera in
                  <var>.a.</var>
                et in
                  <var>.b.</var>
                etiam æqualia. </s>
                <s xml:id="echoid-s1773" xml:space="preserve">lineæ autem inclinationum ſint
                  <var>.a.u.</var>
                et
                  <var>.b.u.</var>
                  <lb/>
                imaginemur etiam lineam
                  <var>.o.u.</var>
                & à centro
                  <var>.o.</var>
                libræ duas
                  <var>.o.t.</var>
                et
                  <var>.o.e.</var>
                perpendiculares
                  <lb/>
                inclinationum lineis; </s>
                <s xml:id="echoid-s1774" xml:space="preserve">vnde pondus ipſius
                  <var>.a.</var>
                in huiuſmodi ſitu tam erit proportiona
                  <lb/>
                tum ponderi
                  <var>.b.</var>
                quam proportionata erit linea
                  <var>.o.t.</var>
                lineæ
                  <var>.o.e.</var>
                ex eo
                  <reg norm="quod" type="simple">ꝙ</reg>
                tertio cap. hu-
                  <lb/>
                iustractatus probaui, ſed linea
                  <var>.o.t.</var>
                maior eſt linea
                  <var>.o.e.</var>
                quod ſic probo. </s>
                <s xml:id="echoid-s1775" xml:space="preserve">Imaginemur
                  <lb/>
                triangulum
                  <var>.u.a.b.</var>
                circunſcriptum eſſe à circulo
                  <var>.u.a.n.b.</var>
                cuius
                  <var>.c.</var>
                ſit centrum,
                  <reg norm="quod" type="simple">ꝙ</reg>
                erit
                  <lb/>
                extra lineam
                  <var>.u.o.</var>
                cum ſupponatur
                  <var>.a.o.b.</var>
                obliquam eſſe reſpectu ad
                  <var>.u.o</var>
                . </s>
                <s xml:id="echoid-s1776" xml:space="preserve">Imagine-
                  <lb/>
                mur deinde à centro
                  <var>.c.</var>
                lineam
                  <var>.c.o.s.</var>
                vſque ad circunferentiam, quæ perpendicula-
                  <lb/>
                ris erit ipſi
                  <var>.a.b.</var>
                ex tertia lib. 3. Eucli. </s>
                <s xml:id="echoid-s1777" xml:space="preserve">ſi poſteà imaginemur duas lineas
                  <var>.c.a.</var>
                et
                  <var>.c.b.</var>
                ha
                  <lb/>
                bebimus ex .8. lib. primi, angulum
                  <var>.a.c.o.</var>
                æqualem angulo
                  <var>.b.c.o</var>
                . </s>
                <s xml:id="echoid-s1778" xml:space="preserve">Vnde ex .25. lib. 3.
                  <lb/>
                arcus
                  <var>.a.s.</var>
                æqualis erit arcui
                  <var>.b.s.</var>
                ſed ſi imaginabimur
                  <var>.u.o.</var>
                ad circunferentiam vſque
                  <lb/>
                productam, clarum erit
                  <reg norm="quod" type="simple">ꝙ</reg>
                arcum
                  <var>.s.b.</var>
                ſecaret in puncto
                  <var>.n.</var>
                vnde arcus
                  <var>.n.b.</var>
                minor erit
                  <lb/>
                arcu
                  <var>.n.a.</var>
                & ſic etiam angulus
                  <var>.n.u.b.</var>
                minor erit angulo
                  <var>.n.u.a.</var>
                ex
                  <ref id="ref-0024">ultima lib. 6.</ref>
                </s>
                <s xml:id="echoid-s1779" xml:space="preserve">Imagi-
                  <lb/>
                nemur nunc alium quendam circulum, cuius
                  <var>.o.u.</var>
                ſit diameter, cuius circunferentia
                  <lb/>
                per duo puncta
                  <var>.e.</var>
                et
                  <var>.t.</var>
                  <reg norm="prætergradiatur" type="simple">prætergradiat̃</reg>
                , cum in ipſis ſint angulirecti, quod quilibet ex
                  <lb/>
                ſeratio cinando colligere poteſt, ſi .30. lib. 3. in mentem reuocauerit. </s>
                <s xml:id="echoid-s1780" xml:space="preserve">Sed cum angu-
                  <lb/>
                lus
                  <var>.o.u.t.</var>
                ſit maior angulo
                  <var>.o.u.e.</var>
                arcus
                  <var>.o.t.</var>
                maior erit arcu
                  <var>.o.e.</var>
                ex vltima .6. vnde cor
                  <lb/>
                da
                  <var>.o.t.</var>
                maior erit corda ipſius
                  <var>.o.e.</var>
                ex conuerſo .27. lib. 3. quod eſt propoſitum. </s>
                <s xml:id="echoid-s1781" xml:space="preserve">Pon-
                  <lb/>
                  <handwritten xlink:label="hd-0160-01" xlink:href="hd-0160-01a" number="9"/>
                dusigitur ipſius
                  <var>.a.</var>
                in huiuſmodi ſitu, pondere ipſius
                  <var>.b.</var>
                grauius erit. </s>
                <s xml:id="echoid-s1782" xml:space="preserve">Quod è directo ijs
                  <lb/>
                repugnat quæ Tartalea in 2. parte quinræ propoſitionis ediſerit, & per conſequens
                  <lb/>
                2. corollarij falſitatem oſtendit, vt eam quoque, quæ in 6. propoſitione latet. </s>
                <s xml:id="echoid-s1783" xml:space="preserve">quia
                  <reg norm="cum" type="context">cũ</reg>
                </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>