Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
161 149
162 150
163 151
164 152
165 153
166 154
167 155
168 156
169 157
170 158
171 159
172 160
173 161
174 162
175 163
176 164
177 165
178 166
179 167
180 168
181 169
182 170
183 171
184 172
185 173
186 174
187 175
188 176
189 177
190 178
< >
page |< < (153) of 445 > >|
DE MECHAN.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div340" type="chapter" level="2" n="3">
            <div xml:id="echoid-div358" type="section" level="3" n="10">
              <pb o="153" rhead="DE MECHAN." n="165" file="0165" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0165"/>
            </div>
            <div xml:id="echoid-div362" type="section" level="3" n="11">
              <head xml:id="echoid-head214" style="it" xml:space="preserve">Quod Aristo. in prima mechanicarum quæstionum eius quod
                <lb/>
              inquir it, uer am cauſam non attulerit.</head>
              <head xml:id="echoid-head215" xml:space="preserve">CAP. XI.</head>
              <p>
                <s xml:id="echoid-s1823" xml:space="preserve">QVærens Ariſtoteles vnde fiat, vt eæ libræ, quæ brachia habent alijs longiora,
                  <lb/>
                ſint exactiores cæteris, ait hoc euenire ratione maioris velocitatis extremo
                  <lb/>
                rum earundem. </s>
                <s xml:id="echoid-s1824" xml:space="preserve">Quod verum non eſt; </s>
                <s xml:id="echoid-s1825" xml:space="preserve">quia hîc effectus nil aliud eſt, quam clarius pro
                  <lb/>
                ponere ob omnium oculos obliquitatem brachiorum à linea orizontali, & oſtende-
                  <lb/>
                re etiam facilius à dicto orizontali ſitu exire brachia iam dicta. </s>
                <s xml:id="echoid-s1826" xml:space="preserve">Quæ quidem per ſe
                  <lb/>
                neque à velocitate, neque à tarditate motus, ſed à ratione vectis, & à ma-
                  <lb/>
                iori interuallo inter ſecundum ſitum extremorum à primo proficiſcuntur. </s>
                <s xml:id="echoid-s1827" xml:space="preserve">Vt exem-
                  <lb/>
                pli gratia, imaginemur magnam libram
                  <var>.A.B.</var>
                orizontalem, cuius centrum ſit
                  <var>.E.</var>
                et
                  <lb/>
                pondus
                  <var>.B.</var>
                maius ſit pondere ipſius
                  <var>.A.</var>
                vnde conceditur, quòd ob hanc rationem di-
                  <lb/>
                cta libra ſitum mutabit, qui ſecundus ſitus ſit in
                  <var>.H.F</var>
                . </s>
                <s xml:id="echoid-s1828" xml:space="preserve">Imaginemur etiam
                  <reg norm="paruam" type="context">paruã</reg>
                  <reg norm="quan- dam" type="context">quã-
                    <lb/>
                  dam</reg>
                libram
                  <var>.a.e.b.</var>
                orizontalem, quæ pondera habeat
                  <var>.a.</var>
                et
                  <var>.b.</var>
                æqualia duobus ponde
                  <lb/>
                ribus alterius libræ & ſecundus ſitus ſit in
                  <var>.h.f.</var>
                ita tamen vt anguli circa
                  <var>.e.</var>
                æquales
                  <lb/>
                ſint ijs, qui ſunt circa
                  <var>.E.</var>
                ideſt
                  <var>.b.e.f.</var>
                ſit ęqualis
                  <var>.B.E.F</var>
                . </s>
                <s xml:id="echoid-s1829" xml:space="preserve">Nunc dico ſitum
                  <var>.H.F.</var>
                  <reg norm="exa- ctiorem" type="context">exa-
                    <lb/>
                  ctiorẽ</reg>
                futurum & clariorem ſitu
                  <var>.h.e.f.</var>
                ratione interualli
                  <var>.B.F.</var>
                maioris, interuallo
                  <var>.
                    <lb/>
                  b.f.</var>
                quod
                  <var>.B.F.</var>
                in eadem proportione maior eſt ipſo
                  <var>.b.f.</var>
                in qua
                  <var>.B.E.</var>
                maius eſt
                  <var>.b.e.</var>
                  <lb/>
                quod autem interuallum
                  <var>.B.F.</var>
                breuiori, aut longiori temporis ſpacio quam
                  <var>.b.f.</var>
                ſit fa
                  <lb/>
                ctum, nil planè refert. </s>
                <s xml:id="echoid-s1830" xml:space="preserve">Ratione vectis deinde, dico
                  <reg norm="quod" type="simple">ꝙ</reg>
                ſi ſupponemus duas libras pa-
                  <lb/>
                res
                  <reg norm="æqualesque" type="simple">æqualesq́;</reg>
                in omni alio reſpectu, præter quàm in brachiorum longitudine, pon-
                  <lb/>
                dus
                  <var>.B.</var>
                maiorem vim habebit ad deprimendum brachium
                  <var>.E.B.</var>
                quàm pondus
                  <var>.b.</var>
                quia
                  <lb/>
                libræ materiales, cum ſuſtineantur ab
                  <var>.E.e.</var>
                & non à puncto mathematico, ſed
                  <lb/>
                à linea, aut ſuperficie naturali in materia exiſtente. </s>
                <s xml:id="echoid-s1831" xml:space="preserve">vnde aliqua reſiſtentia ipſi mo-
                  <lb/>
                tui brachiorum oritur, & hanc ob cauſam, ſupponendo hanc reſiſtentiam æqualem
                  <lb/>
                tam in
                  <var>.E.</var>
                quàm in
                  <var>.e.</var>
                clarum erit ob ea, quæ in cap .4. huius tractatus oſtendi
                  <var>.B.</var>
                cum
                  <lb/>
                minus dependeat ab
                  <var>.E.</var>
                aut minus quoque eidem
                  <var>.E.</var>
                annitatur, ponderoſum magis
                  <lb/>
                futurum, quam
                  <var>.b.</var>
                & hac de cauſa mouebit ad partem inferiorem, maiori cum agilita
                  <lb/>
                te, brachium
                  <var>.E.B.</var>
                multo magis etiam illud ipſum deprimet, ideſt maiorem etiam an
                  <lb/>
                gulum
                  <var>.B.E.F.</var>
                quàm erit angulus
                  <var>.b.e.f.</var>
                faciet.</s>
              </p>
              <figure position="here">
                <image file="0165-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0165-01"/>
              </figure>
            </div>
          </div>
        </div>
      </text>
    </echo>