Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
191 179
192 180
193 181
194 182
195 183
196 184
197 185
198 186
199 187
200 188
201 189
202 190
203 191
204 192
205 193
206 194
207 195
208 196
209 197
210 198
211 199
212 200
213 201
214 202
215 203
216 204
217 205
218 206
219 207
220 208
< >
page |< < (156) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div340" type="chapter" level="2" n="3">
            <div xml:id="echoid-div367" type="section" level="3" n="14">
              <p>
                <pb o="156" rhead="IO. BAPT. BENED." n="168" file="0168" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0168"/>
                <s xml:id="echoid-s1854" xml:space="preserve">
                  <reg norm="Sitque" type="simple">Sitq;</reg>
                ſemper diuiſum à linea
                  <var>.a.o.e.</var>
                per medium, ſequitur communi quodam con-
                  <lb/>
                ceptu, nullam nobis difficultatem oborituram, dictum centrum ad quam volueri-
                  <lb/>
                mus partem ducendo, quemadmodum à qualibet alia figura, quæ perfectè rotunda
                  <lb/>
                non eſſet, emergeret; </s>
                <s xml:id="echoid-s1855" xml:space="preserve">Vt
                  <reg norm="exempli" type="context">exẽpli</reg>
                gratia, ſi imaginabimur pentagonum
                  <var>.K.i.h.f.l.</var>
                quie
                  <lb/>
                ſcere
                  <reg norm="ſuper" type="simple">ſuꝑ</reg>
                  <reg norm="eandem" type="context">eandẽ</reg>
                  <reg norm="lineam" type="context">lineã</reg>
                  <var>.a.b.K.</var>
                ita ut
                  <reg norm="primum" type="context">primũ</reg>
                  <reg norm="totum" type="context">totũ</reg>
                latus
                  <var>.i.K.</var>
                in linea
                  <var>.b.K.</var>
                  <reg norm="extendatur" type="context simple">extẽdat̃</reg>
                ,
                  <reg norm="ducen- do" type="context">ducẽ-
                    <lb/>
                  do</reg>
                poſteà centrum
                  <var>.o.</var>
                (ponamus.) verſus
                  <var>.l.</var>
                dubium non eſt, quin oporteat, vt dictum
                  <lb/>
                centrum
                  <var>.o.</var>
                à linea
                  <var>.b.d.</var>
                eleuetur, ab
                  <reg norm="eademque" type="simple">eademq;</reg>
                magis diſtet, voluens ſe per
                  <reg norm="arcum" type="context">arcũ</reg>
                vnum
                  <lb/>
                circuli,
                  <reg norm="qui" type="simple">ꝗ</reg>
                  <reg norm="pro" type="simple">ꝓ</reg>
                ſuo ſemidiametro habeat
                  <var>.o.K.</var>
                quę maior eſt ipſa
                  <var>.o.a.</var>
                ex .18. li. primi Eu
                  <lb/>
                cli. vnde ſi à puncto
                  <var>.K.</var>
                imaginabimur lineam
                  <var>.K.c.</var>
                reſpicientem centrum regionis
                  <lb/>
                elementaris, dubium non eſt, quin ſi velimus transferre
                  <reg norm="centrum" type="context">cẽtrum</reg>
                hoc à priori ſitu
                  <reg norm="vſque" type="simple">vſq;</reg>
                  <lb/>
                ad dictam lineam, oporteat addere pondus parti ipſius
                  <var>.l.</var>
                quæ à linea
                  <var>.K.c.</var>
                fuit ſecta,
                  <lb/>
                aut aliquid de ipſo pondere partis centri detrahere. </s>
                <s xml:id="echoid-s1856" xml:space="preserve">quod quibuſuis modis fiat, ar-
                  <lb/>
                duum certè eſt ad efficiendum; </s>
                <s xml:id="echoid-s1857" xml:space="preserve">neque hoc etiam accidit figuræ perfectè rotundæ,
                  <lb/>
                cum
                  <reg norm="centrum" type="context">cẽtrum</reg>
                  <reg norm="quod" type="simple">ꝙ</reg>
                perfectè in medio ipſius ponderis eſt, reperiatur ſemper in linea per-
                  <lb/>
                pendiculari ipſi plano, in quo animaduertendum eſt,
                  <reg norm="quod" type="simple">ꝙ</reg>
                etiam ſi ipſum planum ap-
                  <lb/>
                pellem; </s>
                <s xml:id="echoid-s1858" xml:space="preserve">pro plano tamen perfecto intelligi nolo, ſed pro ſuperficie perfectè
                  <reg norm="ſphaeri- ca" type="simple">ſphęri-
                    <lb/>
                  ca</reg>
                circa centrum à corporibus grauibus expetitum; </s>
                <s xml:id="echoid-s1859" xml:space="preserve">nam ratione magnæ amplitudi-
                  <lb/>
                nis huiuſmodi ſuperficiei, nullam differentiam notatu dignam à perfecto aliquo pla
                  <lb/>
                no exigui interualli ad curuitatem eiuſdem ſuperficiei imaginari poterimus. </s>
                <s xml:id="echoid-s1860" xml:space="preserve">Sed ut
                  <lb/>
                redeamus ad ſermonem de reuolutione figuræ rotundæ ſuſceptum,
                  <reg norm="clarum" type="context">clarũ</reg>
                igitur erit
                  <lb/>
                quamlibet minimam vim (vt ita dicam) quę trahat, aut impellat centrum
                  <var>.o.</var>
                verſus
                  <var>.u.</var>
                  <lb/>
                huiuſmodi figuram reuoluturam, cuius media pars ad trahendum, aut impellendum
                  <lb/>
                punctum
                  <var>.e.</var>
                ſufficiere; </s>
                <s xml:id="echoid-s1861" xml:space="preserve">Imaginemur autem
                  <reg norm="quod" type="simple">ꝙ</reg>
                li
                  <lb/>
                nea
                  <var>.n.o.u.</var>
                eſſet libra
                  <reg norm="quędam" type="context">quędã</reg>
                in figura perfectè
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0168-01a" xlink:href="fig-0168-01"/>
                rotunda
                  <var>.a.n.e.u.</var>
                poſita, & vis, quę trahere cen
                  <lb/>
                trum deberet, diuiſa eſſet per medium, cuius
                  <lb/>
                medietas appenſa eſſet extremitati
                  <var>.u.</var>
                diame-
                  <lb/>
                tri
                  <var>.n.o.u.</var>
                  <reg norm="clarum" type="context">clarũ</reg>
                erit,
                  <reg norm="quod" type="simple">ꝙ</reg>
                abſque vlla difficultate
                  <lb/>
                reuolueret figuram ſuper lineam
                  <var>.b.a.d.</var>
                verſus
                  <var>.
                    <lb/>
                  d.</var>
                quia huius vis, aut pondus
                  <reg norm="nullum" type="context">nullũ</reg>
                contra pon
                  <lb/>
                dus haberet vltra centrum
                  <var>.o.</var>
                uerſus
                  <var>.n.</var>
                  <reg norm="quod" type="simple">ꝙ</reg>
                cen-
                  <lb/>
                trum
                  <var>.o.</var>
                perpetuo quieſcit
                  <reg norm="ſuper" type="simple">ſuꝑ</reg>
                . a. in linea
                  <var>.e.o.
                    <lb/>
                  a.</var>
                per medium diuidente ſemper totum pon-
                  <lb/>
                dus figurę ſuppoſitę. </s>
                <s xml:id="echoid-s1862" xml:space="preserve">Tantò facilius ergo tota
                  <lb/>
                dicta vis ap
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0168-02a" xlink:href="fig-0168-02"/>
                  <anchor type="figure" xlink:label="fig-0168-03a" xlink:href="fig-0168-03"/>
                plicata cen
                  <lb/>
                tro,
                  <reg norm="ipsum" type="context">ipsũ</reg>
                ver
                  <lb/>
                ſus
                  <var>.u.</var>
                  <reg norm="trahens" type="context">trahẽs</reg>
                  <lb/>
                per lineam
                  <lb/>
                  <reg norm="parallelam" type="context">parallelã</reg>
                ip
                  <lb/>
                ſi
                  <var>.a.d.</var>
                  <reg norm="dictam" type="context">dictã</reg>
                  <lb/>
                figuram re-
                  <lb/>
                uolueret. </s>
                <s xml:id="echoid-s1863" xml:space="preserve">Et
                  <lb/>
                ſi linea qua
                  <lb/>
                dictum cen
                  <lb/>
                trum trahi-
                  <lb/>
                tur ab ipſo </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>