Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
131 119
132 120
133 121
134 122
135 123
136 124
137 125
138 126
139 127
140 128
141 129
142 130
143 131
144 132
145 133
146 134
147 135
148 136
149 137
150 138
151 139
152 140
153 141
154 142
155 143
156 144
157 145
158 146
159 147
160 148
< >
page |< < (163) of 445 > >|
DE MECHAN.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div340" type="chapter" level="2" n="3">
            <div xml:id="echoid-div379" type="section" level="3" n="20">
              <pb o="163" rhead="DE MECHAN." n="175" file="0175" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0175"/>
            </div>
            <div xml:id="echoid-div381" type="section" level="3" n="21">
              <head xml:id="echoid-head234" style="it" xml:space="preserve">De uera & intrinſeca cauſa trocble arum.</head>
              <head xml:id="echoid-head235" xml:space="preserve">CAP. XXI.</head>
              <p>
                <s xml:id="echoid-s1941" xml:space="preserve">PRo intelligenda vera, & intrinſeca ratione, vnde fiat ut multitudo rotularum in
                  <lb/>
                trochleis cauſa ſit, ut exigua vis ſurſum moueat, aut attollat
                  <reg norm="pondera" type="context">põdera</reg>
                magna. </s>
                <s xml:id="echoid-s1942" xml:space="preserve">Ima
                  <lb/>
                ginemur duas hîc ſubſcriptas trochlæas explicatas tranſuerſaliter in hunc modum,
                  <lb/>
                ideſt ſit
                  <reg norm="paruum" type="context">paruũ</reg>
                  <reg norm="tignum" type="context">tignũ</reg>
                  <var>.a.b.</var>
                fixum &
                  <reg norm="parallelum" type="context">parallelũ</reg>
                orizonti. cui ſint rotulæ appenſe ab infe
                  <lb/>
                riori parte ad ſuperiorem
                  <reg norm="huicque" type="simple">huicq́;</reg>
                è regione
                  <reg norm="oppoſitus" type="simple">oppoſitꝰ</reg>
                ſit aliud
                  <reg norm="tignum" type="context">tignũ</reg>
                  <var>.c.d.</var>
                quod moueri
                  <lb/>
                poſſit ab imo ad ſumum, ſuper quod totidem ſint rotulæ aut radij,
                  <reg norm="cum" type="context">cũ</reg>
                annexa poſtea
                  <lb/>
                fuerit funis puncto
                  <var>.b.</var>
                fixo, eam faciendo pertranſire per rotulas tam à parte ſupe-
                  <lb/>
                riore, quam ab inferiore; </s>
                <s xml:id="echoid-s1943" xml:space="preserve">& appenſum deinde cum erit paruo illi tigno
                  <var>.c.d.</var>
                mobili
                  <lb/>
                pondus
                  <var>.E.</var>
                ducendo poſtmodum extremum
                  <var>.f.</var>
                funis tranſeuntis per rotulas, idem pla
                  <lb/>
                nè fiet quod à trochlęis ſimul unitis fieri ſolet. </s>
                <s xml:id="echoid-s1944" xml:space="preserve">Cuius quidem effectus ratio ſub no-
                  <lb/>
                ſtram cognitionem cadet facilius in huiuſmodi figura. </s>
                <s xml:id="echoid-s1945" xml:space="preserve">Imaginemur ſeparatim ſta-
                  <lb/>
                teram
                  <var>.g.h.</var>
                cuius
                  <reg norm="centrum" type="context">cẽtrum</reg>
                ſit
                  <var>.K.</var>
                ita ſitum, ut brachium
                  <var>.g.k.</var>
                ſit duplum ad brachium
                  <var>.K.
                    <lb/>
                  h.</var>
                ſupponendo igitur in puncto
                  <var>.g.</var>
                pondus, aut virtutem mouentem unius libræ, & in
                  <lb/>
                h. duarum librarum,
                  <reg norm="abſque" type="simple">abſq;</reg>
                dubio hæ duæ uirtutes in huiuſmodi diſtantijs à centro
                  <lb/>
                  <anchor type="handwritten" xlink:label="hd-0175-01a" xlink:href="hd-0175-01"/>
                ęquales
                  <reg norm="inuicem" type="context">inuicẽ</reg>
                  <reg norm="erunt" type="context">erũt</reg>
                , ob rationes prioribus capitibus iam allatas, & ſtatera orizontalis
                  <lb/>
                manebit. </s>
                <s xml:id="echoid-s1946" xml:space="preserve">Vnde clarum erit,
                  <reg norm="quod" type="simple">ꝙ</reg>
                quæuis etiam exigua virtus adiuncta ipſi
                  <var>.g.</var>
                mouebit
                  <lb/>
                ſtateram extra orizontalem ſitum. </s>
                <s xml:id="echoid-s1947" xml:space="preserve">Nunc ſi puncto
                  <var>.i.</var>
                ex æquo medio inter
                  <var>.g.</var>
                et
                  <var>.K.</var>
                  <lb/>
                applicata erit virtus ipſius
                  <var>.h.</var>
                non amplius conſiderato brachio
                  <var>.K.h.</var>
                inclinante uirtu-
                  <lb/>
                te ipſius
                  <var>.i.</var>
                eandem partem verſus, in quam inclinabat, quando erat in
                  <var>.h.</var>
                ſed uirtus ip
                  <lb/>
                ſius
                  <var>.g.</var>
                inclinet contrario modo,
                  <reg norm="diuerſoque" type="simple">diuerſoq́;</reg>
                ab eo, quo inclinabat prius; </s>
                <s xml:id="echoid-s1948" xml:space="preserve">clarum
                  <reg norm="quoque" type="simple">quoq;</reg>
                  <lb/>
                erit, communi conceptu, & ob ea, quæ cap .5. huius tractatus ſunt dicta
                  <var>.g.h.</var>
                ſemper
                  <lb/>
                in eodem ſitu abſque motu manſuram,
                  <reg norm="hancque" type="simple">hancq́;</reg>
                ſtateram appellabimus mobilem, &
                  <lb/>
                primam. </s>
                <s xml:id="echoid-s1949" xml:space="preserve">Imaginemur nunc à puncto
                  <var>.e.</var>
                fixo deſcendere funem
                  <var>.e.K.</var>
                quæ fulciat pun
                  <lb/>
                ctum
                  <var>.K.</var>
                extremum diametri
                  <var>.g.K.</var>
                quam intelligo pro diametro vnius ex rotulis infe
                  <lb/>
                rioribus trochleæ; </s>
                <s xml:id="echoid-s1950" xml:space="preserve">& ſit
                  <var>.n.l.m.</var>
                diameter vnius ex rotulis ſuperioribus alterius parui
                  <lb/>
                tigni defixi à parte inclinationis ipſius
                  <var>.g.</var>
                & parallela diametro
                  <var>.g.K.</var>
                cuius diametri
                  <lb/>
                centrum fixum ſit
                  <var>.l.</var>
                & ſit coniunctum
                  <var>.g.</var>
                punctum, à fune cum puncto
                  <var>.m.</var>
                quæ
                  <reg norm="tam" type="context">tã</reg>
                per-
                  <lb/>
                pendicularis ſit primo diametro
                  <var>.g.i.K.</var>
                quàm ſecundo
                  <var>.n.m.</var>
                ideſt ita vt anguli
                  <var>.n.m.g.</var>
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0175-01a" xlink:href="fig-0175-01"/>
                </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>