Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
161 149
162 150
163 151
164 152
165 153
166 154
167 155
168 156
169 157
170 158
171 159
172 160
173 161
174 162
175 163
176 164
177 165
178 166
179 167
180 168
181 169
182 170
183 171
184 172
185 173
186 174
187 175
188 176
189 177
190 178
< >
page |< < (163) of 445 > >|
DE MECHAN.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div340" type="chapter" level="2" n="3">
            <div xml:id="echoid-div379" type="section" level="3" n="20">
              <pb o="163" rhead="DE MECHAN." n="175" file="0175" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0175"/>
            </div>
            <div xml:id="echoid-div381" type="section" level="3" n="21">
              <head xml:id="echoid-head234" style="it" xml:space="preserve">De uera & intrinſeca cauſa trocble arum.</head>
              <head xml:id="echoid-head235" xml:space="preserve">CAP. XXI.</head>
              <p>
                <s xml:id="echoid-s1941" xml:space="preserve">PRo intelligenda vera, & intrinſeca ratione, vnde fiat ut multitudo rotularum in
                  <lb/>
                trochleis cauſa ſit, ut exigua vis ſurſum moueat, aut attollat
                  <reg norm="pondera" type="context">põdera</reg>
                magna. </s>
                <s xml:id="echoid-s1942" xml:space="preserve">Ima
                  <lb/>
                ginemur duas hîc ſubſcriptas trochlæas explicatas tranſuerſaliter in hunc modum,
                  <lb/>
                ideſt ſit
                  <reg norm="paruum" type="context">paruũ</reg>
                  <reg norm="tignum" type="context">tignũ</reg>
                  <var>.a.b.</var>
                fixum &
                  <reg norm="parallelum" type="context">parallelũ</reg>
                orizonti. cui ſint rotulæ appenſe ab infe
                  <lb/>
                riori parte ad ſuperiorem
                  <reg norm="huicque" type="simple">huicq́;</reg>
                è regione
                  <reg norm="oppoſitus" type="simple">oppoſitꝰ</reg>
                ſit aliud
                  <reg norm="tignum" type="context">tignũ</reg>
                  <var>.c.d.</var>
                quod moueri
                  <lb/>
                poſſit ab imo ad ſumum, ſuper quod totidem ſint rotulæ aut radij,
                  <reg norm="cum" type="context">cũ</reg>
                annexa poſtea
                  <lb/>
                fuerit funis puncto
                  <var>.b.</var>
                fixo, eam faciendo pertranſire per rotulas tam à parte ſupe-
                  <lb/>
                riore, quam ab inferiore; </s>
                <s xml:id="echoid-s1943" xml:space="preserve">& appenſum deinde cum erit paruo illi tigno
                  <var>.c.d.</var>
                mobili
                  <lb/>
                pondus
                  <var>.E.</var>
                ducendo poſtmodum extremum
                  <var>.f.</var>
                funis tranſeuntis per rotulas, idem pla
                  <lb/>
                nè fiet quod à trochlęis ſimul unitis fieri ſolet. </s>
                <s xml:id="echoid-s1944" xml:space="preserve">Cuius quidem effectus ratio ſub no-
                  <lb/>
                ſtram cognitionem cadet facilius in huiuſmodi figura. </s>
                <s xml:id="echoid-s1945" xml:space="preserve">Imaginemur ſeparatim ſta-
                  <lb/>
                teram
                  <var>.g.h.</var>
                cuius
                  <reg norm="centrum" type="context">cẽtrum</reg>
                ſit
                  <var>.K.</var>
                ita ſitum, ut brachium
                  <var>.g.k.</var>
                ſit duplum ad brachium
                  <var>.K.
                    <lb/>
                  h.</var>
                ſupponendo igitur in puncto
                  <var>.g.</var>
                pondus, aut virtutem mouentem unius libræ, & in
                  <lb/>
                h. duarum librarum,
                  <reg norm="abſque" type="simple">abſq;</reg>
                dubio hæ duæ uirtutes in huiuſmodi diſtantijs à centro
                  <lb/>
                  <anchor type="handwritten" xlink:label="hd-0175-01a" xlink:href="hd-0175-01"/>
                ęquales
                  <reg norm="inuicem" type="context">inuicẽ</reg>
                  <reg norm="erunt" type="context">erũt</reg>
                , ob rationes prioribus capitibus iam allatas, & ſtatera orizontalis
                  <lb/>
                manebit. </s>
                <s xml:id="echoid-s1946" xml:space="preserve">Vnde clarum erit,
                  <reg norm="quod" type="simple">ꝙ</reg>
                quæuis etiam exigua virtus adiuncta ipſi
                  <var>.g.</var>
                mouebit
                  <lb/>
                ſtateram extra orizontalem ſitum. </s>
                <s xml:id="echoid-s1947" xml:space="preserve">Nunc ſi puncto
                  <var>.i.</var>
                ex æquo medio inter
                  <var>.g.</var>
                et
                  <var>.K.</var>
                  <lb/>
                applicata erit virtus ipſius
                  <var>.h.</var>
                non amplius conſiderato brachio
                  <var>.K.h.</var>
                inclinante uirtu-
                  <lb/>
                te ipſius
                  <var>.i.</var>
                eandem partem verſus, in quam inclinabat, quando erat in
                  <var>.h.</var>
                ſed uirtus ip
                  <lb/>
                ſius
                  <var>.g.</var>
                inclinet contrario modo,
                  <reg norm="diuerſoque" type="simple">diuerſoq́;</reg>
                ab eo, quo inclinabat prius; </s>
                <s xml:id="echoid-s1948" xml:space="preserve">clarum
                  <reg norm="quoque" type="simple">quoq;</reg>
                  <lb/>
                erit, communi conceptu, & ob ea, quæ cap .5. huius tractatus ſunt dicta
                  <var>.g.h.</var>
                ſemper
                  <lb/>
                in eodem ſitu abſque motu manſuram,
                  <reg norm="hancque" type="simple">hancq́;</reg>
                ſtateram appellabimus mobilem, &
                  <lb/>
                primam. </s>
                <s xml:id="echoid-s1949" xml:space="preserve">Imaginemur nunc à puncto
                  <var>.e.</var>
                fixo deſcendere funem
                  <var>.e.K.</var>
                quæ fulciat pun
                  <lb/>
                ctum
                  <var>.K.</var>
                extremum diametri
                  <var>.g.K.</var>
                quam intelligo pro diametro vnius ex rotulis infe
                  <lb/>
                rioribus trochleæ; </s>
                <s xml:id="echoid-s1950" xml:space="preserve">& ſit
                  <var>.n.l.m.</var>
                diameter vnius ex rotulis ſuperioribus alterius parui
                  <lb/>
                tigni defixi à parte inclinationis ipſius
                  <var>.g.</var>
                & parallela diametro
                  <var>.g.K.</var>
                cuius diametri
                  <lb/>
                centrum fixum ſit
                  <var>.l.</var>
                & ſit coniunctum
                  <var>.g.</var>
                punctum, à fune cum puncto
                  <var>.m.</var>
                quæ
                  <reg norm="tam" type="context">tã</reg>
                per-
                  <lb/>
                pendicularis ſit primo diametro
                  <var>.g.i.K.</var>
                quàm ſecundo
                  <var>.n.m.</var>
                ideſt ita vt anguli
                  <var>.n.m.g.</var>
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0175-01a" xlink:href="fig-0175-01"/>
                </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>