Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
161 149
162 150
163 151
164 152
165 153
166 154
167 155
168 156
169 157
170 158
171 159
172 160
173 161
174 162
175 163
176 164
177 165
178 166
179 167
180 168
181 169
182 170
183 171
184 172
185 173
186 174
187 175
188 176
189 177
190 178
< >
page |< < (166) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div340" type="chapter" level="2" n="3">
            <div xml:id="echoid-div383" type="section" level="3" n="22">
              <p>
                <s xml:id="echoid-s1979" xml:space="preserve">
                  <pb o="166" rhead="IO. BAPT. BENED." n="178" file="0178" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0178"/>
                cto
                  <var>.c.</var>
                vnde linea
                  <var>.g.m.</var>
                mediante
                  <var>.K.</var>
                continget circunferentiam circuli minoris in pun
                  <lb/>
                cto .b: et
                  <var>.K.g.</var>
                ex .34. primi Eucli. æqualis erit ipſi
                  <var>.f.l.</var>
                quia ex .17. tertii, anguli
                  <var>.f.</var>
                et
                  <var>.g.</var>
                  <lb/>
                ſunt æquales, vnde ex .28. primi
                  <var>.f.l.</var>
                et
                  <var>.g.K.</var>
                ſunt parallelæ. </s>
                <s xml:id="echoid-s1980" xml:space="preserve">& ſic erunt
                  <var>.k.l.</var>
                cum
                  <var>.f.g.</var>
                ex
                  <lb/>
                eadem ſupradicta. </s>
                <s xml:id="echoid-s1981" xml:space="preserve">Ratio autem, qua arcus
                  <var>.g.b.</var>
                tranſierit lineam
                  <var>.g.K.</var>
                maiorem ipſa,
                  <lb/>
                eſt, quia dum mouetur, quodlibet punctum ipſius
                  <var>.g.b.</var>
                virtute reuolutionis ipſius
                  <var>.f.c.</var>
                  <lb/>
                omne punctum eiuſdem arcus
                  <var>.g.b.</var>
                vlterius verſus
                  <var>.K.</var>
                quam ſi moueretur virtute re-
                  <lb/>
                uolutionis ipſius
                  <var>.g.b.</var>
                ſuper lineam
                  <var>.g.m.</var>
                defertur. </s>
                <s xml:id="echoid-s1982" xml:space="preserve">vt exempli gratia, quando virtute
                  <lb/>
                reuolutionis maioris circuli, centrum
                  <var>.a.</var>
                reperitur in ſitu lineæ
                  <var>.l.K.</var>
                punctum
                  <var>.g.</var>
                confe
                  <lb/>
                cerit iter
                  <var>.g.u.</var>
                & punctum
                  <var>.b.</var>
                iter
                  <var>.b.K.</var>
                etiam reliqua omnia puncta inter
                  <var>.g.b.</var>
                magna
                  <lb/>
                itinera egerint, cum à magno circulo ſint ante delata. </s>
                <s xml:id="echoid-s1983" xml:space="preserve">Imaginemur quoque hos cir
                  <lb/>
                culos eſſe delatos virtute reuolutionis circuli minoris, &
                  <reg norm="partem" type="context">partẽ</reg>
                  <var>.g.t.</var>
                rectè
                  <var>.g.m.</var>
                dimen-
                  <lb/>
                ſam fuiſſe ab arcu
                  <var>.g.b</var>
                . </s>
                <s xml:id="echoid-s1984" xml:space="preserve">
                  <reg norm="Quando" type="context">Quãdo</reg>
                ergo
                  <var>.b.</var>
                erit in
                  <var>.t.</var>
                factum erit iter
                  <var>.b.t.</var>
                ab ipſo
                  <var>.b.</var>
                et
                  <var>.g.</var>
                fa-
                  <lb/>
                ciet iter
                  <var>.g.n.</var>
                quę itinera alijs multò breuiora ſunt, quia breuioribus cruribus reuolu-
                  <lb/>
                ta ſunt dicta puncta; </s>
                <s xml:id="echoid-s1985" xml:space="preserve">& ſic dico de reliquis omnibus punctis inter
                  <var>.g.</var>
                et
                  <var>.b.</var>
                & in hoc ca
                  <lb/>
                ſu punctum
                  <var>.f.</var>
                erit in
                  <var>.q.</var>
                & punctum
                  <var>.c.</var>
                erit in
                  <var>.e</var>
                . </s>
                <s xml:id="echoid-s1986" xml:space="preserve">Quamobrem omnia puncta
                  <reg norm="contingen- tiæ" type="context">cõtingen-
                    <lb/>
                  tiæ</reg>
                inter
                  <var>.f.</var>
                et
                  <var>.c.</var>
                non ſolum non erunt delata anteà, ſed potius à primo ſitu retrorſum
                  <lb/>
                erunt repulſa. </s>
                <s xml:id="echoid-s1987" xml:space="preserve">Vnde non eſt, quòd in tantam admirationem ducamur ſi dum reuol
                  <lb/>
                uitur circulus maior, arcus
                  <var>.g.b.</var>
                circuli minoris, totam lineam
                  <var>.g.K.</var>
                tranſire videtur,
                  <lb/>
                & dum reuoluitur minor, apparet arcum
                  <var>.f.c</var>
                : maius iter quam ab
                  <var>.f.</var>
                ad
                  <var>.e.</var>
                non facere,
                  <lb/>
                cum maiore ſeſe in orbem ferente, quodlibet punctum arcus
                  <var>.g.b.</var>
                ad vnam
                  <reg norm="eandemque" type="context simple">eandẽq;</reg>
                  <lb/>
                partem duos motus obtineat. </s>
                <s xml:id="echoid-s1988" xml:space="preserve">vt exempli gratia punctum
                  <var>.b.</var>
                non ſolum mouetur ver
                  <lb/>
                ſus
                  <var>.m.</var>
                quòd circa centrum
                  <var>.a.</var>
                feratur, cum ipſum etiam centrum moueatur verſus
                  <var>.m.</var>
                  <lb/>
                ſed quia pręter hoc deferantur quoque à circulo maiori verſus
                  <var>.m.</var>
                vſque ad lineam
                  <var>.
                    <lb/>
                  k.l</var>
                . </s>
                <s xml:id="echoid-s1989" xml:space="preserve">Dum verò minor circulus in girum ducitur, habet quodlibet punctum arcus
                  <var>.f.c.</var>
                  <lb/>
                duos motus contrarios, quorum alter verſus
                  <var>.i.</var>
                virtute reuolutionis circuli minoris,
                  <lb/>
                & alter ex eo,
                  <reg norm="quod" type="simple">ꝙ</reg>
                dictus circulus maior circa centrum
                  <var>.a.</var>
                voluatur, vnde omne
                  <reg norm="punctum" type="context">punctũ</reg>
                  <lb/>
                contactus circuli maioris cum recta
                  <var>.f.i.</var>
                tetrorſum pellitur verſus
                  <var>.x</var>
                .</s>
              </p>
              <figure position="here">
                <image file="0178-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0178-01"/>
              </figure>
            </div>
          </div>
        </div>
      </text>
    </echo>