Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
171 159
172 160
173 161
174 162
175 163
176 164
177 165
178 166
179 167
180 168
181 169
182 170
183 171
184 172
185 173
186 174
187 175
188 176
189 177
190 178
191 179
192 180
193 181
194 182
195 183
196 184
197 185
198 186
199 187
200 188
< >
page |< < (174) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div387" type="chapter" level="2" n="4">
            <div xml:id="echoid-div400" type="section" level="3" n="8">
              <p>
                <s xml:id="echoid-s2074" xml:space="preserve">
                  <pb o="174" rhead="IO. BAPT. BENED." n="186" file="0186" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0186"/>
                  <var>o.x.</var>
                et
                  <var>.B.</var>
                quoque in eodem loco amittere
                  <var>.c.s.</var>
                et
                  <var>.A.</var>
                in
                  <reg norm="aem" type="context">aẽ</reg>
                  <unsure/>
                re partem
                  <var>.i.o.</var>
                et
                  <var>.B.</var>
                partem.
                  <lb/>
                  <var>.t.s</var>
                . </s>
                <s xml:id="echoid-s2075" xml:space="preserve">Nunc quia corpus aqueum, cui correſpondet
                  <var>.e.o.</var>
                æquale eſt ipſi
                  <var>.A.</var>
                & corpus
                  <lb/>
                aqueum, cui correſpondet
                  <var>.c.s.</var>
                æquale eſt i pſi
                  <var>.B.</var>
                vt eſt ab Archimede
                  <reg norm="probatum" type="context">probatũ</reg>
                : </s>
                <s xml:id="echoid-s2076" xml:space="preserve">com
                  <lb/>
                muni quadam ſcientiæ ratione, ſequitur eandem proportionem futuram
                  <var>.o.x.</var>
                ad
                  <var>.e.o.</var>
                  <lb/>
                quæ eſt
                  <var>.u.s.</var>
                ad
                  <var>.c.s.</var>
                ob
                  <reg norm="eaſdemque" type="simple">eaſdemq́;</reg>
                rationes idem erit de
                  <var>.x.o.</var>
                ad
                  <var>.i.o.</var>
                ut
                  <var>.u.s.</var>
                ad
                  <var>.t.s.</var>
                &
                  <reg norm="idem" type="context">idẽ</reg>
                  <lb/>
                etiam erit de
                  <var>.o.x.</var>
                ad
                  <var>.s.u.</var>
                vt de
                  <var>.e.o.</var>
                ad
                  <var>.c.s.</var>
                vt etiam de
                  <var>.o.i.</var>
                ad
                  <var>.s.t</var>
                . </s>
                <s xml:id="echoid-s2077" xml:space="preserve">Vnde ex .19. lib.
                  <lb/>
                quintí erit de
                  <var>.x.i.</var>
                ad
                  <var>.u.t.</var>
                quemadmodum de
                  <var>.x.o.</var>
                ad
                  <var>.u.s.</var>
                idem dico de
                  <var>.x.e.</var>
                ad
                  <var>.u.c</var>
                . </s>
                <s xml:id="echoid-s2078" xml:space="preserve">Ex
                  <lb/>
                11. igitur dicti lib. erit. de
                  <var>.x.i.</var>
                ad
                  <var>.u.t.</var>
                quemadmodum de
                  <var>.x.e.</var>
                ad
                  <var>.u.c.</var>
                ex quibus
                  <reg norm="quidem" type="context">quidẽ</reg>
                  <lb/>
                proportionibus, ſi ſubtra
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0186-01a" xlink:href="fig-0186-01"/>
                hantur proportiones @reſi
                  <lb/>
                  <reg norm="ſtentiarum" type="context">ſtẽtiarum</reg>
                extrinſecus
                  <reg norm="ad- uenentium" type="context">ad-
                    <lb/>
                  uenẽtium</reg>
                , proportiones
                  <lb/>
                quæ remanebunt, exter-
                  <lb/>
                tio communi axiomate
                  <lb/>
                ab Eucli. in principio pri­
                  <lb/>
                mi lib. poſito, ad inuicem
                  <lb/>
                erunt æquales, ſecundum quas eorundem corporum ſunt velocitates.</s>
              </p>
              <div xml:id="echoid-div400" type="float" level="4" n="1">
                <figure xlink:label="fig-0185-02" xlink:href="fig-0185-02a">
                  <image file="0185-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0185-02"/>
                </figure>
                <figure xlink:label="fig-0186-01" xlink:href="fig-0186-01a">
                  <image file="0186-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0186-01"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div402" type="section" level="3" n="9">
              <head xml:id="echoid-head259" style="it" xml:space="preserve">Anrectè Aristoteles diſeruerit de proportionibus mo-
                <lb/>
              tuum in uacuo.</head>
              <head xml:id="echoid-head260" xml:space="preserve">CAP. IX.</head>
              <p>
                <s xml:id="echoid-s2079" xml:space="preserve">CVm verò Ariſtoteles circa finem cap .8. lib. 4. phyſicorum ſubiungit quod ea-
                  <lb/>
                dem proportione dicta corpora mouerentur in vacuo, vt in pleno, id pace
                  <reg norm="eius" type="simple">eiꝰ</reg>
                  <lb/>
                  <reg norm="dictum" type="context">dictũ</reg>
                ſit planè
                  <reg norm="erroneum" type="context">erroneũ</reg>
                eſt. </s>
                <s xml:id="echoid-s2080" xml:space="preserve">quia in pleno dictis corporibus ſubtrahitur proportio reſi
                  <lb/>
                ſtentiarum extrinſecarum à proportione ponderum, vt velocitatum proportio re-
                  <lb/>
                maneat, quę nulla eſſet, ſi dictarum reſiſtentiarum proportio, ponderum propor-
                  <lb/>
                tioni æqualis eſſet, & hanc ob cauſam diuerſam velocitatum proportionem in va-
                  <lb/>
                cuo haberent ab ea, quæ eſt in pleno.</s>
              </p>
            </div>
            <div xml:id="echoid-div403" type="section" level="3" n="10">
              <head xml:id="echoid-head261" style="it" xml:space="preserve">Quòd in uacuo corpor a eiuſdem materiæ æquali uelocita-
                <lb/>
              te mouerentur.</head>
              <head xml:id="echoid-head262" xml:space="preserve">CAP.X.</head>
              <p>
                <s xml:id="echoid-s2081" xml:space="preserve">QVòd ſupradicta corpora in vacuo naturaliter pari velocitate mouerentur,
                  <lb/>
                hac ratione aſſero.</s>
              </p>
              <p>
                <s xml:id="echoid-s2082" xml:space="preserve">Sint enim duo corpora
                  <var>.o.</var>
                et
                  <var>.g.</var>
                omogenea, et
                  <var>.g.</var>
                ſit dimidia pars ipſius
                  <var>.o.</var>
                ſint alia
                  <lb/>
                quoque duo corpora
                  <var>.a.</var>
                et
                  <var>.e.</var>
                omogenea primis, quorum quodlibet æquale ſit ipſi
                  <var>.g.</var>
                  <lb/>
                & imaginatione compręhendamus ambo poſita in extremitatibus alicuius lineæ, cu
                  <lb/>
                ius medium ſit
                  <var>.i.</var>
                clarum erit, tantum pondus habiturum, punctum
                  <var>.i.</var>
                quantum
                  <reg norm="centrum" type="context">centrũ</reg>
                  <lb/>
                ipſius
                  <var>.o.</var>
                quod
                  <var>.i.</var>
                virtute corporis
                  <var>.a.</var>
                et
                  <var>.e.</var>
                in vacuo,
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0186-02a" xlink:href="fig-0186-02"/>
                eadem velocitate moueretur, quacentrum ipſius .
                  <lb/>
                o: </s>
                <s xml:id="echoid-s2083" xml:space="preserve">cum autem difiuncta eſſent dicta corpora
                  <var>.a.</var>
                et
                  <var>.e.</var>
                  <lb/>
                à dicta linea, non ideo aliquo modo ſuam velocita­ </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>