Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
141 129
142 130
143 131
144 132
145 133
146 134
147 135
148 136
149 137
150 138
151 139
152 140
153 141
154 142
155 143
156 144
157 145
158 146
159 147
160 148
161 149
162 150
163 151
164 152
165 153
166 154
167 155
168 156
169 157
170 158
< >
page |< < (176) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div387" type="chapter" level="2" n="4">
            <div xml:id="echoid-div407" type="section" level="3" n="12">
              <p>
                <s xml:id="echoid-s2088" xml:space="preserve">
                  <pb o="176" rhead="IO. BAPT. BENED." n="188" file="0188" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0188"/>
                ſed proportio
                  <var>.p.f.</var>
                ad
                  <var>.q.i.</var>
                maior eſſet ea, quæ eſt
                  <var>.c.f.</var>
                ad
                  <var>.q.i.</var>
                ex. octaua lib. quinti, vn-
                  <lb/>
                de ex .12. eiuſdem lib. maior eſſet
                  <var>.p.f.</var>
                ad
                  <var>.q.i.</var>
                quàm.o.f. ad
                  <var>.n.i.</var>
                ex .33. igitur eiuſdem,
                  <lb/>
                maior erit proportio
                  <var>.p.o.</var>
                ad
                  <var>.q.n.</var>
                quàm.p.f. ad
                  <var>.q.i</var>
                . </s>
                <s xml:id="echoid-s2089" xml:space="preserve">Sic quoque ſe habebunt ad inui
                  <lb/>
                cem velocitates, quod eſt propoſitum. </s>
                <s xml:id="echoid-s2090" xml:space="preserve">Cum autem proportio
                  <var>.p.o.</var>
                ad
                  <var>.q.n.</var>
                maior ſit,
                  <lb/>
                quàm.p.f. ad
                  <var>.q.i.</var>
                permurando igitur maior erit proportio
                  <var>.p.o.</var>
                ad
                  <var>.p.f.</var>
                quam
                  <var>.q.n.</var>
                ad
                  <var>.
                    <lb/>
                  q.i.</var>
                aut euerſim maior erit proportio
                  <var>.q.i.</var>
                ad
                  <var>.q.n.</var>
                quàm.p.f. ad
                  <var>.p.o.</var>
                vnde ſi proportio
                  <lb/>
                  <var>p.f.</var>
                ad
                  <var>.p.o.</var>
                eſſet ac ea, quæ eſt
                  <var>.o.g.</var>
                ad
                  <var>.f.g.</var>
                non eſſet
                  <var>.q.i.</var>
                ad
                  <var>.q.n.</var>
                ut eſt
                  <var>.o.g.</var>
                ad
                  <var>.f.g.</var>
                aut
                  <lb/>
                vt
                  <var>.n.k.</var>
                ad
                  <var>.i.k.</var>
                quodidem
                  <lb/>
                eſt, de quibus quidem re-
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0188-01a" xlink:href="fig-0188-01"/>
                bus, exemplis propoſitis
                  <lb/>
                quinto capite
                  <reg norm="mentionem" type="context">mẽtionem</reg>
                  <lb/>
                feci.</s>
              </p>
              <div xml:id="echoid-div407" type="float" level="4" n="1">
                <figure xlink:label="fig-0187-02" xlink:href="fig-0187-02a">
                  <image file="0187-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0187-02"/>
                </figure>
                <figure xlink:label="fig-0188-01" xlink:href="fig-0188-01a">
                  <image file="0188-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0188-01"/>
                </figure>
              </div>
              <p>
                <s xml:id="echoid-s2091" xml:space="preserve">Velocitatibus autem ſe-
                  <lb/>
                quentibus pondera, ſequi
                  <lb/>
                tur proportionem veloci-
                  <lb/>
                citatum duorum corporum hetereogeneorum eandem non eſſe per diuerſa media,
                  <lb/>
                contra id, quod ſequeretur ſi Ariſtotelis opinionem .8. cap. lib. 4. phyſicorum re-
                  <lb/>
                ciperemus.</s>
              </p>
            </div>
            <div xml:id="echoid-div409" type="section" level="3" n="13">
              <head xml:id="echoid-head267" style="it" xml:space="preserve">Longe aliter ueritatem ſe habere quam Aristoteles
                <lb/>
              doceat in fine libri ſeptimi phyſicorum.</head>
              <head xml:id="echoid-head268" xml:space="preserve">CAP. XIII.</head>
              <p>
                <s xml:id="echoid-s2092" xml:space="preserve">NOn tam facile eſt aſſignare proportionem velocitatum duorum corporum na
                  <lb/>
                turalium, quam Ariſtoteles vltimo cap. lib. 7. phyſicorum putauit.</s>
              </p>
              <p>
                <s xml:id="echoid-s2093" xml:space="preserve">Quamobrem ſint duo corpora
                  <var>.B.</var>
                et
                  <var>.D.</var>
                materia
                  <reg norm="magnitudineque" type="simple">magnitudineq́;</reg>
                diuerſa, pondere
                  <lb/>
                tamen, & figura ſimilia, & proportio reſiſtentiarum, quas recipiunt à medio
                  <reg norm="dum" type="context">dũ</reg>
                mo-
                  <lb/>
                uentur, ſit. ut
                  <var>.o.i.</var>
                ad
                  <var>.a.e.</var>
                denotentur deinde velocitates totales abſque vlla reſiſten-
                  <lb/>
                tia ab
                  <var>.a.u.</var>
                et
                  <var>.o.c.</var>
                quæ æquales erunt ad inuicem per communem ſcientiam ex ſup-
                  <lb/>
                poſito, ſint alia deinde duo corpora
                  <var>.V.</var>
                et
                  <var>.M.</var>
                eodem modo ſe habentia ut prima
                  <var>.B.</var>
                  <lb/>
                et
                  <var>.D.</var>
                in eodem medio, ſed ex diuerſa materia ab ea, quæ eſt illorum duorum corpo
                  <lb/>
                rum, magnitudine tamen & figura ijſdem ſimilia: </s>
                <s xml:id="echoid-s2094" xml:space="preserve">ſignificentur quoque eo-
                  <lb/>
                rundem reſiſtentiæ per
                  <var>.t.s.</var>
                et
                  <var>.n.r.</var>
                & eorundem velocitates à nulla ex reſiſtentijs di-
                  <lb/>
                minutæ, per
                  <var>.n.x.</var>
                et
                  <var>.t.g.</var>
                vnde
                  <var>.n.r.</var>
                æqualis erit
                  <var>.a.e.</var>
                et
                  <var>.t.s.</var>
                ipſi
                  <var>.o.i.</var>
                et
                  <var>.n.x.</var>
                ipſi
                  <var>.t.g</var>
                :
                  <var>n.x.</var>
                ta-
                  <lb/>
                men et
                  <var>.t.g.</var>
                non erunt ęqualia
                  <var>.a.u.</var>
                et
                  <var>.o.c</var>
                . </s>
                <s xml:id="echoid-s2095" xml:space="preserve">Sed exempli gratia, ponamus ea eſſe mi-
                  <lb/>
                nora. </s>
                <s xml:id="echoid-s2096" xml:space="preserve">Supponamus nunc
                  <var>.e.u.</var>
                velocitatem eſſe quæ remanet ipſi
                  <var>.B.</var>
                cum applicata
                  <lb/>
                erit reſiſtentia
                  <var>.a.e.</var>
                dicto corpori
                  <var>.B.</var>
                quæ diminutam facit totam
                  <var>.a.u.</var>
                per
                  <var>.a.e.</var>
                  <reg norm="ſitque" type="simple">ſitq́;</reg>
                  <var>.i.c.</var>
                  <lb/>
                ea, quę remanet ipſi
                  <var>.o.c.</var>
                corporis
                  <var>.D.</var>
                et
                  <var>.r.x.</var>
                ea, quæ remanet
                  <var>.n.x.</var>
                corporis
                  <var>.V.</var>
                et
                  <var>.s.g.</var>
                  <lb/>
                ea, quæ eſt ex
                  <var>.t.g.</var>
                corporis
                  <var>.M</var>
                . </s>
                <s xml:id="echoid-s2097" xml:space="preserve">Vnde communi omnium
                  <reg norm="conſenſu" type="context">cõſenſu</reg>
                aſſequemur
                  <var>.e.u.</var>
                ma
                  <lb/>
                iorem futuram
                  <var>.r.x.</var>
                et
                  <var>.i.c.</var>
                ipſa
                  <var>.s.g</var>
                . </s>
                <s xml:id="echoid-s2098" xml:space="preserve">Scindatur deinde
                  <var>.a.m.</var>
                ad ęqualitatem
                  <var>.n.x.</var>
                et
                  <var>.o.z.</var>
                  <lb/>
                ipſius
                  <var>.t.g.</var>
                vnde
                  <var>.a.m.</var>
                ad
                  <var>.o.z.</var>
                et
                  <var>.m.u.</var>
                ad
                  <var>.z.c.</var>
                æquales habebimus, ut quoque
                  <var>.e.m.</var>
                ad
                  <var>.r.
                    <lb/>
                  x.</var>
                et
                  <var>.i.z.</var>
                ad
                  <var>.s.g.</var>
                quamobrem
                  <var>.e.m.</var>
                maior erit ipſa
                  <var>.z.i.</var>
                maior igitur erit proportio
                  <var>.z.c.</var>
                  <lb/>
                ad
                  <var>.z.i.</var>
                quàm.m.u. ad
                  <var>.m.e.</var>
                (quia
                  <var>.z.c.</var>
                ad
                  <var>.z.i.</var>
                ita ſe habet vt
                  <var>.m.u.</var>
                ad
                  <var>.i.z.</var>
                ex .7. lib. quin-
                  <lb/>
                ti, ſed
                  <var>.m.u.</var>
                ad
                  <var>.i.z.</var>
                maior eſt quam ad
                  <var>.m.e.</var>
                ex .8. dicti lib. vnde ex .12. eiuſdem
                  <var>.z.c.</var>
                ad
                  <lb/>
                ad
                  <var>.z.i.</var>
                maior erit, quàm.m.u. ad
                  <var>.m.e</var>
                . </s>
                <s xml:id="echoid-s2099" xml:space="preserve">Ergo ex .28. maior proportio erit
                  <var>.c.i.</var>
                ad
                  <var>.z.i.</var>
                </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>