Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
171 159
172 160
173 161
174 162
175 163
176 164
177 165
178 166
179 167
180 168
181 169
182 170
183 171
184 172
185 173
186 174
187 175
188 176
189 177
190 178
191 179
192 180
193 181
194 182
195 183
196 184
197 185
198 186
199 187
200 188
< >
page |< < (179) of 445 > >|
DISPVTATIONES.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div387" type="chapter" level="2" n="4">
            <div xml:id="echoid-div413" type="section" level="3" n="17">
              <pb o="179" rhead="DISPVTATIONES." n="191" file="0191" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0191"/>
              <p>
                <s xml:id="echoid-s2126" xml:space="preserve">Quod in vniuerſum nec etiam poteſt eſſe verum in pleno, quia cap .14. iam pro-
                  <lb/>
                baui, non eandem proportionem eſſe inter ſuperſicies corporum, & ipſa corpora.</s>
              </p>
            </div>
            <div xml:id="echoid-div414" type="section" level="3" n="18">
              <head xml:id="echoid-head277" style="it" xml:space="preserve">Quomodo dignoſcatur proportio uelocitatis duorum ſimilium
                <lb/>
              corporum omogeniorum inaqualium.</head>
              <head xml:id="echoid-head278" xml:space="preserve">CAP. XVIII.</head>
              <p>
                <s xml:id="echoid-s2127" xml:space="preserve">ETiam ſi reperire in qua proportione motus naturaliter moueantur duo corpo-
                  <lb/>
                ra, figura & materia ſimilia, inęqualia tamen ad inuicem, non facile ſit, oſten-
                  <lb/>
                dam tamen qua ratione id conſequi poſſimus.</s>
              </p>
              <p>
                <s xml:id="echoid-s2128" xml:space="preserve">Proponantur nobis, exempli gratia, duo corpora
                  <var>.a.</var>
                et
                  <var>.o.</var>
                ſphęrica, inęqualia inui-
                  <lb/>
                cem, omogenea tamen materia, quorum
                  <var>.a.</var>
                maius ſit; </s>
                <s xml:id="echoid-s2129" xml:space="preserve">ſi voluerimus inuenire in qua
                  <lb/>
                nam velocitatis proportione naturaliter mouerentur. </s>
                <s xml:id="echoid-s2130" xml:space="preserve">Volo vt inquiratur corpus
                  <var>.i.</var>
                  <lb/>
                ſphęricum, alia tamen & diuerſa materia conſtans, ſed pondere ęquale corpori
                  <var>.o.</var>
                &
                  <lb/>
                ſuperſicie tam proportionata ſuperficiei corp oris
                  <var>.a.</var>
                quàm eſt ea, quæ eſt ſui ponde-
                  <lb/>
                ris ad pondus ipſius
                  <var>.a</var>
                . </s>
                <s xml:id="echoid-s2131" xml:space="preserve">Hoc facto, indagetur, quænam erit proportio inter ſu-
                  <lb/>
                perficies corporum
                  <var>.i.</var>
                et
                  <var>.o.</var>
                quę ſemper dupla eſt, vel ſubdupla ei quæ eſt diametro-
                  <lb/>
                rum; </s>
                <s xml:id="echoid-s2132" xml:space="preserve">ut iam cap .15. dixi, & hęc proportio ſuperficierum ſphęricarum
                  <reg norm="ipſius" type="simple">ipſiꝰ</reg>
                  <var>.o.</var>
                et
                  <var>.i.</var>
                ſub
                  <lb/>
                trahatur ab æqualitate, quod igitur remanebit, erit proportio
                  <reg norm="velocitatum" type="context">velocitatũ</reg>
                inter duo
                  <lb/>
                corpora
                  <var>.o.</var>
                et
                  <var>.i.</var>
                ideſt inter
                  <var>.o.</var>
                et
                  <var>.a.</var>
                vt exempli gratia, ſi proportio ſuperficiei
                  <var>.o.</var>
                ſuperfi
                  <lb/>
                ciei ipſius
                  <var>.i.</var>
                ſeſquitertiα
                  <unsure/>
                eſſet, ſub
                  <lb/>
                trahendo eam ab ęqualitate, rema-
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0191-01a" xlink:href="fig-0191-01"/>
                neret
                  <reg norm="proportio" type="simple">ꝓportio</reg>
                ſubſeſquitertia, vnde
                  <lb/>
                velocitas corporis maioris ( quod in
                  <lb/>
                pręſenti loco ſupponitur eſſe
                  <var>.o.</var>
                ) ei,
                  <lb/>
                quę eſt corporis minoris, quale eſt
                  <lb/>
                corpus
                  <var>.i.</var>
                ſubſeſquitertia eſſet; </s>
                <s xml:id="echoid-s2133" xml:space="preserve">aut
                  <lb/>
                dicamus quòd
                  <var>.i.</var>
                eſſet velocius ipſo
                  <lb/>
                o. in proportione ſeſquitertia ex ſe
                  <lb/>
                cundo ſuppoſito ſecundi capitis huius libri. </s>
                <s xml:id="echoid-s2134" xml:space="preserve">Sed
                  <var>.i.</var>
                tam velox eſt quam ipſum
                  <var>.a.</var>
                ex
                  <num value="11">.
                    <lb/>
                  11.</num>
                cap. ergo proportio velocitatis ipſius
                  <var>.a.</var>
                ſeſquitertia erit ei. quæ eſt ipſius
                  <var>.o</var>
                .</s>
              </p>
              <div xml:id="echoid-div414" type="float" level="4" n="1">
                <figure xlink:label="fig-0191-01" xlink:href="fig-0191-01a">
                  <image file="0191-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0191-01"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div416" type="section" level="3" n="19">
              <head xml:id="echoid-head279" style="it" xml:space="preserve">Quam ſit inanis ab Ariſtotele ſuſcepta demonſtratio quod
                <lb/>
              uacuum non detur.</head>
              <head xml:id="echoid-head280" xml:space="preserve">CAP. XIX.</head>
              <p>
                <s xml:id="echoid-s2135" xml:space="preserve">EX ijs, quæ ſuperius
                  <reg norm="demonſtrauimus" type="context">demõſtrauimus</reg>
                facilè cognoſci poteſt irritam eſſc eam ratio
                  <lb/>
                nem, quam Ariſtoteles .8. cap. lib. 4. phyſicorum ad deſtruendum vacuum,
                  <reg norm="con" type="context">cõ</reg>
                  <lb/>
                finxit. </s>
                <s xml:id="echoid-s2136" xml:space="preserve">Vtigitur idem facilius oſtendamus, compræhendamus imaginatione infini-
                  <lb/>
                ta media corporea, quorum vnum altero rarius ſit, in qua placuerit nobis ex propor
                  <lb/>
                tionibus, incipiendo ab uno, imaginemur etiam corpus
                  <var>.Q.</var>
                denſius primo medio, cu-
                  <lb/>
                ius corporis, totalis grauitas ſit
                  <var>.a.b.</var>
                & poſitum in ipſo medio, amittat partem
                  <var>.e.b.</var>
                ip-
                  <lb/>
                ſius grauitatis, & in ſecundo medio amittat
                  <var>.i.b.</var>
                & ſic per gradus vnde nobis patebie
                  <unsure/>
                </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>