Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
191 179
192 180
193 181
194 182
195 183
196 184
197 185
198 186
199 187
200 188
201 189
202 190
203 191
204 192
205 193
206 194
207 195
208 196
209 197
210 198
211 199
212 200
213 201
214 202
215 203
216 204
217 205
218 206
219 207
220 208
< >
page |< < (180) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div387" type="chapter" level="2" n="4">
            <div xml:id="echoid-div416" type="section" level="3" n="19">
              <p>
                <s xml:id="echoid-s2136" xml:space="preserve">
                  <pb o="180" rhead="IO. BAPT. BENED." n="192" file="0192" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0192"/>
                dicto corpori
                  <var>.Q</var>
                . </s>
                <s xml:id="echoid-s2137" xml:space="preserve">Nunquam remanſuram ſuam totalem grauitatem
                  <var>.a.b.</var>
                in quolibet
                  <lb/>
                ex-dictis medijs. </s>
                <s xml:id="echoid-s2138" xml:space="preserve">Nunc ſi quærat à me Ariſtoteles proportionem velocitatis corpo-
                  <lb/>
                ris
                  <var>.Q.</var>
                per vacuum ad velocitatem dicti corporis per plenum, ego ei proponam pro-
                  <lb/>
                portionem ipſius
                  <var>.a.b.</var>
                ad
                  <var>.a.e.</var>
                exempli gratia, dicens,
                  <reg norm="quod" type="simple">ꝙ</reg>
                  <reg norm="quemadmodum" type="wordlist">quẽadmodum</reg>
                  <var>.a.b.</var>
                maius eſt
                  <lb/>
                ip ſo
                  <var>.a.e.</var>
                ſic etiam corpus
                  <var>.Q.</var>
                velocius erit in vacuo, quàm in pleno, dicti autem ple-
                  <lb/>
                ni denſitatem appellabimus
                  <var>.e.b</var>
                . </s>
                <s xml:id="echoid-s2139" xml:space="preserve">Ariſtoteles dicet nunc,
                  <reg norm="quod" type="simple">ꝙ</reg>
                aliud quoddam medium
                  <lb/>
                in eadem proportione ſubtilius ipſo
                  <var>.e.b.</var>
                deſumatur; </s>
                <s xml:id="echoid-s2140" xml:space="preserve">quemadmodum
                  <var>.a.e.</var>
                minus eſt
                  <lb/>
                ipſo
                  <var>.a.b.</var>
                ſit ergo iſtud
                  <var>.i.b.</var>
                in quo Ariſtoteles credit corpus Q. futurum tam velox ut
                  <lb/>
                in vacuo, in quo aberrat,
                  <reg norm="quia" type="simple">ꝗa</reg>
                proportio velocitatis corporis
                  <var>.Q.</var>
                in medio
                  <var>.i.b.</var>
                ad velo
                  <lb/>
                citatem eiuſdem in medio
                  <lb/>
                  <var>e.b.</var>
                ita ſe hàbebit, ut
                  <var>.i.a.</var>
                ad
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0192-01a" xlink:href="fig-0192-01"/>
                  <var>e.a.</var>
                ex ultimo ſuppoſito ca
                  <lb/>
                pit .2. huius libr. quæ minor
                  <lb/>
                eſſet ea, quæ eſt
                  <var>.a.b.</var>
                ad
                  <var>.a.e.</var>
                ex .8. lib. quinti Eucli.</s>
              </p>
              <div xml:id="echoid-div416" type="float" level="4" n="1">
                <figure xlink:label="fig-0192-01" xlink:href="fig-0192-01a">
                  <image file="0192-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0192-01"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div418" type="section" level="3" n="20">
              <head xml:id="echoid-head281" style="it" xml:space="preserve">Non ſatis dilucidè Ariſtotelem de loco ratiocinatum fuiße.</head>
              <head xml:id="echoid-head282" xml:space="preserve">CAP. XX.</head>
              <p>
                <s xml:id="echoid-s2141" xml:space="preserve">QVæ Ariſtoteles de loco ſcribit multas in ſe continent difficultates. </s>
                <s xml:id="echoid-s2142" xml:space="preserve">Primum,
                  <lb/>
                cap .4. lib. 4. phyſicorum ait, omne corpus eſſe in ſuo proprio loco, ſupponen
                  <lb/>
                do vnum centrum pro loco grauium, et unam circunferentiam pro loco leuium cor
                  <lb/>
                porum. </s>
                <s xml:id="echoid-s2143" xml:space="preserve">Sed quomodo punctum poteſt eſſe locus ipſius corporis, cum omni dimen
                  <lb/>
                ſione
                  <reg norm="capacitateque" type="simple">capacitateq́;</reg>
                ſit denudatum? </s>
                <s xml:id="echoid-s2144" xml:space="preserve">vnde ſi
                  <reg norm="centrum" type="context">centrũ</reg>
                locus eſſet corporum grauium, om
                  <lb/>
                nia dicta corpora grauia, extra proprium locum exiſterent, quia nullum ex iis eſt,
                  <reg norm="quod" type="simple">ꝙ</reg>
                  <lb/>
                ſit in centro. </s>
                <s xml:id="echoid-s2145" xml:space="preserve">Adde quod neque hoc cum loci definitione ab ipſo poſita conſentiret
                  <lb/>
                cum ipſe dicat in eodem cap. locum eſſe ſuperſiciem quandam, & non interuallum,
                  <lb/>
                licet huiuſmodi definitio falſa appareat primo ex
                  <reg norm="inconuenienti" type="context">incõuenienti</reg>
                falſo, quod ipſe hinc
                  <lb/>
                ſequuturum dicit, ideſt, quod ſi locus interuallum eſſet, infinita loca exiſterent, quod
                  <lb/>
                reuera nec ob hanc cauſam inconueniens exiſtit, quia eodem planè modo quo ali-
                  <lb/>
                quod corpus poteſt eſſe infinita corpora, (quod ipſe diceret in potentia) ſic etiam in
                  <lb/>
                teruallum aliquod poſſet eſſe infinita interualla. </s>
                <s xml:id="echoid-s2146" xml:space="preserve">Cum autem dicat ſuperficies cor-
                  <lb/>
                poris ambientis eſſe locum eius corporis, quod continetur, cogitur dicere lineam,
                  <lb/>
                quæ circundat ſuperficiem, ſuperficiei locum eſſe, & puncta ipſius lineæ, quod reue
                  <lb/>
                ra abſurdum eſt. </s>
                <s xml:id="echoid-s2147" xml:space="preserve">Locus corporis eſt interuallum illud eadem magnitudine & figu-
                  <lb/>
                ra, qua corpus ipſum pręditum eſt, quod ſi non eſſet, ſed eſſet ſuperficies, quemad-
                  <lb/>
                modum Ariſtoteles voluit, maximum inconueniens ſequeretur, ſcilicet æquales lo-
                  <lb/>
                cos capere inęqualia corpora, aut corpora æqualia, locos inęquales occupare, quod
                  <lb/>
                ſcitu facillimum eſt, cum Theon ſuper Ptolomęi Almageſtum iam probarit ſphæ-
                  <lb/>
                ricam ſuperficiem maius interuallum corporeum continere, quàm aliam
                  <reg norm="quanuis" type="context">quãuis</reg>
                ſu-
                  <lb/>
                perficiem dictæ ſphęricæ æqualem, vnde poſſent facilè reperiri duo loci, quorum al-
                  <lb/>
                ter millies altero maior eſſet, capaces tamen corporum æqualium, aut reperiri duo
                  <lb/>
                corpora, quorum alterum millies maius eſſet altero, quę tamen corpora apta eſſent
                  <lb/>
                ad occupandos locos ęquales, quamuis Ariſtoteles dicat, locum, neque maiorem ne
                  <lb/>
                que minorem eſſe debere locato. </s>
                <s xml:id="echoid-s2148" xml:space="preserve">Sed interualla corporea ęqualia à quauis figura
                  <lb/>
                terminata, continebunt ſemper corpora ęqualia. </s>
                <s xml:id="echoid-s2149" xml:space="preserve">Corporeum igitur interuallum eſt </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>