Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
171 159
172 160
173 161
174 162
175 163
176 164
177 165
178 166
179 167
180 168
181 169
182 170
183 171
184 172
185 173
186 174
187 175
188 176
189 177
190 178
191 179
192 180
193 181
194 182
195 183
196 184
197 185
198 186
199 187
200 188
< >
page |< < (181) of 445 > >|
DISPVTATIONES.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div387" type="chapter" level="2" n="4">
            <div xml:id="echoid-div418" type="section" level="3" n="20">
              <p>
                <s xml:id="echoid-s2149" xml:space="preserve">
                  <pb o="181" rhead="DISPVTATIONES." n="193" file="0193" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0193"/>
                reuera locus corpori adęquatus, cum corpus in interuallum ſuperſiciale non intret,
                  <lb/>
                quam @is interuallum corporeum ingrediatur. </s>
                <s xml:id="echoid-s2150" xml:space="preserve">Et hoc modo
                  <reg norm="nullum" type="context">nullũ</reg>
                eſt corpus, quod
                  <lb/>
                in m@ do aut extra mundum ( dicat autem Ariſtoteles quicquid voluerit ) locum
                  <lb/>
                ſuum non habeat.</s>
              </p>
            </div>
            <div xml:id="echoid-div419" type="section" level="3" n="21">
              <head xml:id="echoid-head283" style="it" xml:space="preserve">V
                <unsure/>
              trum bene Aristoteles ſenſerit de infinito.</head>
              <head xml:id="echoid-head284" xml:space="preserve">CAP. XXI.</head>
              <p>
                <s xml:id="echoid-s2151" xml:space="preserve">TRactans Ariſtoteles in fine quinti cap. lib. 3. phyſicorum de infinito ait, impoſ­
                  <lb/>
                ſibile cum ſit inuenire locum infinitum, & omne corpus in loco cum ſit, impoſ
                  <lb/>
                ſibile quoque eſſe in rerum natura aliquod: </s>
                <s xml:id="echoid-s2152" xml:space="preserve">infinitum corpus reperiri. </s>
                <s xml:id="echoid-s2153" xml:space="preserve">Omittamus
                  <lb/>
                quòd cum Ariſtoteles debuerit beneficio loci deſtruere infinitum, ordine peruerſo
                  <lb/>
                de infinito prius, quàm de loco diſputationem inſtituat; </s>
                <s xml:id="echoid-s2154" xml:space="preserve">ſed dicamus ipſum intelli-
                  <lb/>
                gere de infinito corporeo, & cum probauerimus corporis locum eſſe corporeum in
                  <lb/>
                teruallum, non autem ſuperficiem, neque opus ſit in definitione interualli mentio
                  <lb/>
                nem aliquam facere terminorum, vnde ipſum infinitum eſſe poteſt, neque aliqua ra
                  <lb/>
                tione de hac re dubitari poteſt; </s>
                <s xml:id="echoid-s2155" xml:space="preserve">hoc modo nullum inconueniens ſequeretur, quòd
                  <lb/>
                extra cęlum reperiri poſſit corpus aliquod infinitum, quamuis, id ipſe nulla euiden-
                  <lb/>
                ti ratione inductus perneget. </s>
                <s xml:id="echoid-s2156" xml:space="preserve">Senſit quoque, abſque eo,
                  <reg norm="quod" type="simple">ꝙ</reg>
                aliquam rationem propo
                  <lb/>
                nat, aliquid extra cœlum reperiri quemadmodum apparet ex fine cap .9. lib. primi
                  <lb/>
                de cœlo, cum etiam ait cap .8. lib. 8. phyſicorum, infinitas partes alicuius continui eſ-
                  <lb/>
                ſe ſolum in potentia, non item in actu, hoc non eſt illico concedendum, quia ſi omne
                  <lb/>
                totum continuum, & re ipſa exiſtens, in actu eſt, omnis quoque eius pars erit in actu,
                  <lb/>
                quia ſtultum eſſet credere, ea quæ actu ſunt, ex ijs, quæ potentia exiſtunt, componi.
                  <lb/>
                </s>
                <s xml:id="echoid-s2157" xml:space="preserve">Neque etiam dicendum eſt continuationem earundem partium efficere, vt poten-
                  <lb/>
                tia ſint ipſæ partes, & omni actu priuatæ; </s>
                <s xml:id="echoid-s2158" xml:space="preserve">Sit exempli gratia linea recta
                  <var>.a.u.</var>
                continua
                  <lb/>
                quæ deinde diuidatur in puncto
                  <var>.e.</var>
                per æqualia, dubium non eſt, quin ante
                  <reg norm="diuiſionem" type="context">diuiſionẽ</reg>
                ,
                  <lb/>
                medietas
                  <var>.a.e.</var>
                tam in actu (licet coniuncta cum alia
                  <var>.e.u.</var>
                ) reperiretur, quàm totum .2.
                  <lb/>
                u. licet à ſenſu diſtincta non eſſet. </s>
                <s xml:id="echoid-s2159" xml:space="preserve">Idem affirmo de medietate
                  <var>.a.e.</var>
                ideſt de quarta
                  <lb/>
                parte totius
                  <var>.a.u.</var>
                & pariter de octaua, de milleſima, & de quauis, ita vt eſſentia actua
                  <lb/>
                lis infiniti hoc modo tutò concedi poſſit,
                  <reg norm="cum" type="context">cũ</reg>
                ita ſit in natura. </s>
                <s xml:id="echoid-s2160" xml:space="preserve">Sed peius etiam ſenſit
                  <lb/>
                Ariſtoteles eodem loco capitis quinti lib. 3. phyſicorum, negando infinitum poſſe
                  <lb/>
                connumerari inter quantitates, dicens vnam aliquam quantitatem intelligi vt cubi
                  <lb/>
                tum, tricubitum, & cætera; </s>
                <s xml:id="echoid-s2161" xml:space="preserve">vbi non conſiderat eadem etiam ratione intelligi poſſe
                  <lb/>
                aliquam quantitatem
                  <reg norm="infinitorum" type="context">infinitorũ</reg>
                cubitorum, & in quantitatis definitione nullam eſ-
                  <lb/>
                ſe neceſſitatem terminorum, vt exempli gratia in definitione numeri, non eſt neceſ
                  <lb/>
                ſitas alicuius determinati numeri, quia multitudo, non minus infinita, quàm finita,
                  <lb/>
                intelligi poteſt. </s>
                <s xml:id="echoid-s2162" xml:space="preserve">Vbi poſteà cap .8. libr .4. phyſicorum ait nullam eſſe differentiam
                  <lb/>
                inter infinitum, & vacuum, reuera nihil abſurdius hoc dicere fingereue poterat.</s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>