Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
191 179
192 180
193 181
194 182
195 183
196 184
197 185
198 186
199 187
200 188
201 189
202 190
203 191
204 192
205 193
206 194
207 195
208 196
209 197
210 198
211 199
212 200
213 201
214 202
215 203
216 204
217 205
218 206
219 207
220 208
< >
page |< < (201) of 445 > >|
IN QVINT. LIB. EVCLI.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div441" type="chapter" level="2" n="5">
            <div xml:id="echoid-div454" type="section" level="3" n="2">
              <div xml:id="echoid-div455" type="section" level="4" n="2">
                <p>
                  <s xml:id="echoid-s2434" xml:space="preserve">
                    <var>
                      <pb o="201" rhead="IN QVINT. LIB. EVCLI." n="213" file="0213" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0213"/>
                    b.</var>
                  et
                    <var>.b.</var>
                  ad
                    <var>.g.</var>
                  & ſimiliter proportio
                    <var>.f.</var>
                  ad
                    <var>.h.</var>
                    <reg norm="componitur" type="context">cõponitur</reg>
                  ex eis quæſunt
                    <var>.f.</var>
                  ad
                    <var>.c.</var>
                  et
                    <var>.c.</var>
                  ad
                    <var>.d.</var>
                    <lb/>
                  et
                    <var>.d.</var>
                  ad
                    <var>.h</var>
                  .</s>
                </p>
                <div xml:id="echoid-div455" type="float" level="5" n="1">
                  <figure xlink:label="fig-0212-01" xlink:href="fig-0212-01a">
                    <image file="0212-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0212-01"/>
                  </figure>
                </div>
              </div>
              <div xml:id="echoid-div457" type="section" level="4" n="3">
                <head xml:id="echoid-head343" xml:space="preserve">THEOR.V. ET VI.</head>
                <p>
                  <s xml:id="echoid-s2435" xml:space="preserve">
                    <emph style="sc">Circa</emph>
                  5. et .6. theorema nihil notandum occurrit.</s>
                </p>
              </div>
              <div xml:id="echoid-div458" type="section" level="4" n="4">
                <head xml:id="echoid-head344" xml:space="preserve">THEOR. VII. VIII. IX.X. XI. XII. XIII.</head>
                <p>
                  <s xml:id="echoid-s2436" xml:space="preserve">THeoremata à .6. in .13. cum ſint de obiectis intelligibilibus, ſine vllo medio,
                    <lb/>
                  ab intellectu cognitis, inter axiomata à me relata fuerunt .7. inquam quinti
                    <lb/>
                  Euclid. fecimus tertium Poſtulatum, .8. quintum, .9. quartum, .10. ſextum, .11. ſepti­
                    <lb/>
                  mum, .12. octauum, .13. nonum.</s>
                </p>
              </div>
              <div xml:id="echoid-div459" type="section" level="4" n="5">
                <head xml:id="echoid-head345" xml:space="preserve">THEOREM. XIIII.</head>
                <p>
                  <s xml:id="echoid-s2437" xml:space="preserve">QVartumdecimum Theorema ex Euclide demonſtrabitur, mutatis tantum
                    <lb/>
                  theorematibus ab interprete notatis, ita vt loco .7. 8. noni, & decimi citetur
                    <lb/>
                  tertium .5. 4. et .6. poſtulatum à me propoſitum.</s>
                </p>
              </div>
              <div xml:id="echoid-div460" type="section" level="4" n="6">
                <head xml:id="echoid-head346" xml:space="preserve">THEOR. XV.</head>
                <p>
                  <s xml:id="echoid-s2438" xml:space="preserve">QVintumdecimum Theorema ſic demonſtrabo; </s>
                  <s xml:id="echoid-s2439" xml:space="preserve">Sit, exempli gratia, a. termi-
                    <lb/>
                  nus antecedens. et
                    <var>.b.</var>
                  conſequens, qui-
                    <lb/>
                  bus duo multiplices ſumantur
                    <var>.c.</var>
                  et
                    <var>.d</var>
                  . </s>
                  <s xml:id="echoid-s2440" xml:space="preserve">Dico
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0213-01a" xlink:href="fig-0213-01"/>
                  eandem proportionem habiturum
                    <var>.c.</var>
                  ad
                    <var>.d.</var>
                    <lb/>
                  quam
                    <var>.a.</var>
                  ad
                    <var>.b.</var>
                  habet. </s>
                  <s xml:id="echoid-s2441" xml:space="preserve">In primis enim manife-
                    <lb/>
                  ſtè patet quamlibet partem ipſius
                    <var>.c.</var>
                  habitu-
                    <lb/>
                  ram eandem proportionem cum qualibet par
                    <lb/>
                  te
                    <var>.d.</var>
                  quam habet
                    <var>.a.</var>
                  ad
                    <var>.b.</var>
                  quare ex .7. et .8. po
                    <lb/>
                  ſtulato propoſitum eluceſcet.</s>
                </p>
                <div xml:id="echoid-div460" type="float" level="5" n="1">
                  <figure xlink:label="fig-0213-01" xlink:href="fig-0213-01a">
                    <image file="0213-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0213-01"/>
                  </figure>
                </div>
              </div>
              <div xml:id="echoid-div462" type="section" level="4" n="7">
                <head xml:id="echoid-head347" xml:space="preserve">THEOREM. XVI.</head>
                <p>
                  <s xml:id="echoid-s2442" xml:space="preserve">SExtumdecimum theorema ſic demonſtrabitur. </s>
                  <s xml:id="echoid-s2443" xml:space="preserve">Sit, exempli cauſa, eadem pro
                    <lb/>
                  portio
                    <var>.a.</var>
                  ad
                    <var>.b.</var>
                  quæ eſt
                    <var>.c.</var>
                  ad
                    <var>.d</var>
                  . </s>
                  <s xml:id="echoid-s2444" xml:space="preserve">Dico
                    <reg norm="quod" type="simple">ꝙ</reg>
                  ita ſe habebit
                    <var>.a.</var>
                  ad
                    <var>.c.</var>
                  ſicut
                    <var>.b.</var>
                  ad
                    <var>.d</var>
                  . </s>
                  <s xml:id="echoid-s2445" xml:space="preserve">Cogi-
                    <lb/>
                  temus itaque alterum iſtorum terminorum
                    <var>.c.</var>
                  aut
                    <var>.b.</var>
                  medium inter
                    <var>.a.</var>
                  et
                    <var>.d</var>
                  . </s>
                  <s xml:id="echoid-s2446" xml:space="preserve">quare
                    <lb/>
                  primum intelligamus
                    <var>.b.</var>
                  inter
                    <var>.a.</var>
                  et. d proportio ipſius
                    <var>.a.</var>
                  ad
                    <var>.d.</var>
                  componetur ex ea quę
                    <lb/>
                  eſt
                    <var>.a.</var>
                  ad
                    <var>.b.</var>
                  & ea quæ eſt
                    <var>.b.</var>
                  ad
                    <var>.d.</var>
                  ex .12. poſtulato. </s>
                  <s xml:id="echoid-s2447" xml:space="preserve">Et ex eodem, illa ipſa proportio
                    <var>.
                      <lb/>
                    a.</var>
                  ad
                    <var>.d.</var>
                  pariter componetur ex ea quæ eſt
                    <var>.a.</var>
                  ad
                    <var>.c.</var>
                  & ea quæ eſt
                    <var>.c.</var>
                  ad
                    <var>.d.</var>
                  ſumpto
                    <var>.c.</var>
                  pro
                    <lb/>
                  medio termino. </s>
                  <s xml:id="echoid-s2448" xml:space="preserve">Ex quo ſequitur, aggregatum duarum proportionum, videlicet
                    <var>.a.</var>
                    <lb/>
                  ad
                    <var>.b.</var>
                  et
                    <var>.b.</var>
                  ad
                    <var>.d.</var>
                  æquale eſſe aggregato
                    <var>.a.</var>
                  ad
                    <var>.c.</var>
                  et
                    <var>.c.</var>
                  ad
                    <var>.d.</var>
                  ex quibus aggregatis æqua-
                    <lb/>
                  libus ſi duas proportiones æquales ſubtraxerimus, eam videlicet quæ eſt
                    <var>.a.</var>
                  ad
                    <var>.b.</var>
                  & il
                    <lb/>
                  lam quæ eſt
                    <var>.c.</var>
                  ad
                    <var>.d.</var>
                  ſupererunt duæ proportiones
                    <lb/>
                  inter ſe æquales. </s>
                  <s xml:id="echoid-s2449" xml:space="preserve">erit enim proportio
                    <var>.a.</var>
                  ad
                    <var>.c.</var>
                  æqua
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0213-02a" xlink:href="fig-0213-02"/>
                  lis proportioni
                    <var>.b.</var>
                  ad
                    <var>.d.</var>
                  ex prima parte ſecundi po
                    <lb/>
                  ſtulati diuiſim.</s>
                </p>
                <div xml:id="echoid-div462" type="float" level="5" n="1">
                  <figure xlink:label="fig-0213-02" xlink:href="fig-0213-02a">
                    <image file="0213-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0213-02"/>
                  </figure>
                </div>
                <p>
                  <s xml:id="echoid-s2450" xml:space="preserve">Alia etiam ratione idipſum
                    <reg norm="demonſtrari" type="context">demõſtrari</reg>
                  poteſt,
                    <lb/>
                  ſumpto
                    <var>.b.</var>
                  pro medio termino inter
                    <var>.a.</var>
                  et .c: et
                    <var>.c.</var>
                    <lb/>
                  pro termino medio inter
                    <var>.b.</var>
                  et
                    <var>.d</var>
                  . </s>
                  <s xml:id="echoid-s2451" xml:space="preserve">quare propor-
                    <lb/>
                  tio
                    <var>.a.</var>
                  ad
                    <var>.c.</var>
                  componetur ex
                    <var>.a.</var>
                  ad
                    <var>.b.</var>
                  et
                    <var>.b.</var>
                  ad
                    <var>.c.</var>
                  illa
                    <lb/>
                  verò quæ eſt
                    <var>.b.</var>
                  ad
                    <var>.d.</var>
                  ex
                    <var>.b.</var>
                  ad
                    <var>.c.</var>
                  et
                    <var>.c.</var>
                  ad
                    <var>.d.</var>
                  ex .12. </s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>