Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
211 199
212 200
213 201
214 202
215 203
216 204
217 205
218 206
219 207
220 208
221 209
222 210
223 211
224 212
225 213
226 214
227 215
228 216
229 217
230 218
231 219
232 220
233 221
234 222
235 223
236 224
237 225
238 226
239 227
240 228
< >
page |< < (201) of 445 > >|
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div441" type="chapter" level="2" n="5">
            <div xml:id="echoid-div454" type="section" level="3" n="2">
              <div xml:id="echoid-div455" type="section" level="4" n="2">
                <p>
                  <s xml:id="echoid-s2434" xml:space="preserve">
                    <var>
                      <pb o="201" rhead="IN QVINT. LIB. EVCLI." n="213" file="0213" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0213"/>
                    b.</var>
                  et
                    <var>.b.</var>
                  ad
                    <var>.g.</var>
                  & ſimiliter proportio
                    <var>.f.</var>
                  ad
                    <var>.h.</var>
                    <reg norm="componitur" type="context">cõponitur</reg>
                  ex eis quæſunt
                    <var>.f.</var>
                  ad
                    <var>.c.</var>
                  et
                    <var>.c.</var>
                  ad
                    <var>.d.</var>
                    <lb/>
                  et
                    <var>.d.</var>
                  ad
                    <var>.h</var>
                  .</s>
                </p>
              </div>
              <div xml:id="echoid-div457" type="section" level="4" n="3">
                <head xml:id="echoid-head343" xml:space="preserve">THEOR.V. ET VI.</head>
                <p>
                  <s xml:id="echoid-s2435" xml:space="preserve">
                    <emph style="sc">Circa</emph>
                  5. et .6. theorema nihil notandum occurrit.</s>
                </p>
              </div>
              <div xml:id="echoid-div458" type="section" level="4" n="4">
                <head xml:id="echoid-head344" xml:space="preserve">THEOR. VII. VIII. IX.X. XI. XII. XIII.</head>
                <p>
                  <s xml:id="echoid-s2436" xml:space="preserve">THeoremata à .6. in .13. cum ſint de obiectis intelligibilibus, ſine vllo medio,
                    <lb/>
                  ab intellectu cognitis, inter axiomata à me relata fuerunt .7. inquam quinti
                    <lb/>
                  Euclid. fecimus tertium Poſtulatum, .8. quintum, .9. quartum, .10. ſextum, .11. ſepti­
                    <lb/>
                  mum, .12. octauum, .13. nonum.</s>
                </p>
              </div>
              <div xml:id="echoid-div459" type="section" level="4" n="5">
                <head xml:id="echoid-head345" xml:space="preserve">THEOREM. XIIII.</head>
                <p>
                  <s xml:id="echoid-s2437" xml:space="preserve">QVartumdecimum Theorema ex Euclide demonſtrabitur, mutatis tantum
                    <lb/>
                  theorematibus ab interprete notatis, ita vt loco .7. 8. noni, & decimi citetur
                    <lb/>
                  tertium .5. 4. et .6. poſtulatum à me propoſitum.</s>
                </p>
              </div>
              <div xml:id="echoid-div460" type="section" level="4" n="6">
                <head xml:id="echoid-head346" xml:space="preserve">THEOR. XV.</head>
                <p>
                  <s xml:id="echoid-s2438" xml:space="preserve">QVintumdecimum Theorema ſic demonſtrabo; </s>
                  <s xml:id="echoid-s2439" xml:space="preserve">Sit, exempli gratia, a. termi-
                    <lb/>
                  nus antecedens. et
                    <var>.b.</var>
                  conſequens, qui-
                    <lb/>
                  bus duo multiplices ſumantur
                    <var>.c.</var>
                  et
                    <var>.d</var>
                  . </s>
                  <s xml:id="echoid-s2440" xml:space="preserve">Dico
                    <lb/>
                    <figure xlink:label="fig-0213-01" xlink:href="fig-0213-01a" number="263">
                      <image file="0213-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0213-01"/>
                    </figure>
                  eandem proportionem habiturum
                    <var>.c.</var>
                  ad
                    <var>.d.</var>
                    <lb/>
                  quam
                    <var>.a.</var>
                  ad
                    <var>.b.</var>
                  habet. </s>
                  <s xml:id="echoid-s2441" xml:space="preserve">In primis enim manife-
                    <lb/>
                  ſtè patet quamlibet partem ipſius
                    <var>.c.</var>
                  habitu-
                    <lb/>
                  ram eandem proportionem cum qualibet par
                    <lb/>
                  te
                    <var>.d.</var>
                  quam habet
                    <var>.a.</var>
                  ad
                    <var>.b.</var>
                  quare ex .7. et .8. po
                    <lb/>
                  ſtulato propoſitum eluceſcet.</s>
                </p>
              </div>
              <div xml:id="echoid-div462" type="section" level="4" n="7">
                <head xml:id="echoid-head347" xml:space="preserve">THEOREM. XVI.</head>
                <p>
                  <s xml:id="echoid-s2442" xml:space="preserve">SExtumdecimum theorema ſic demonſtrabitur. </s>
                  <s xml:id="echoid-s2443" xml:space="preserve">Sit, exempli cauſa, eadem pro
                    <lb/>
                  portio
                    <var>.a.</var>
                  ad
                    <var>.b.</var>
                  quæ eſt
                    <var>.c.</var>
                  ad
                    <var>.d</var>
                  . </s>
                  <s xml:id="echoid-s2444" xml:space="preserve">Dico
                    <reg norm="quod" type="simple">ꝙ</reg>
                  ita ſe habebit
                    <var>.a.</var>
                  ad
                    <var>.c.</var>
                  ſicut
                    <var>.b.</var>
                  ad
                    <var>.d</var>
                  . </s>
                  <s xml:id="echoid-s2445" xml:space="preserve">Cogi-
                    <lb/>
                  temus itaque alterum iſtorum terminorum
                    <var>.c.</var>
                  aut
                    <var>.b.</var>
                  medium inter
                    <var>.a.</var>
                  et
                    <var>.d</var>
                  . </s>
                  <s xml:id="echoid-s2446" xml:space="preserve">quare
                    <lb/>
                  primum intelligamus
                    <var>.b.</var>
                  inter
                    <var>.a.</var>
                  et. d proportio ipſius
                    <var>.a.</var>
                  ad
                    <var>.d.</var>
                  componetur ex ea quę
                    <lb/>
                  eſt
                    <var>.a.</var>
                  ad
                    <var>.b.</var>
                  & ea quæ eſt
                    <var>.b.</var>
                  ad
                    <var>.d.</var>
                  ex .12. poſtulato. </s>
                  <s xml:id="echoid-s2447" xml:space="preserve">Et ex eodem, illa ipſa proportio
                    <var>.
                      <lb/>
                    a.</var>
                  ad
                    <var>.d.</var>
                  pariter componetur ex ea quæ eſt
                    <var>.a.</var>
                  ad
                    <var>.c.</var>
                  & ea quæ eſt
                    <var>.c.</var>
                  ad
                    <var>.d.</var>
                  ſumpto
                    <var>.c.</var>
                  pro
                    <lb/>
                  medio termino. </s>
                  <s xml:id="echoid-s2448" xml:space="preserve">Ex quo ſequitur, aggregatum duarum proportionum, videlicet
                    <var>.a.</var>
                    <lb/>
                  ad
                    <var>.b.</var>
                  et
                    <var>.b.</var>
                  ad
                    <var>.d.</var>
                  æquale eſſe aggregato
                    <var>.a.</var>
                  ad
                    <var>.c.</var>
                  et
                    <var>.c.</var>
                  ad
                    <var>.d.</var>
                  ex quibus aggregatis æqua-
                    <lb/>
                  libus ſi duas proportiones æquales ſubtraxerimus, eam videlicet quæ eſt
                    <var>.a.</var>
                  ad
                    <var>.b.</var>
                  & il
                    <lb/>
                  lam quæ eſt
                    <var>.c.</var>
                  ad
                    <var>.d.</var>
                  ſupererunt duæ proportiones
                    <lb/>
                  inter ſe æquales. </s>
                  <s xml:id="echoid-s2449" xml:space="preserve">erit enim proportio
                    <var>.a.</var>
                  ad
                    <var>.c.</var>
                  æqua
                    <lb/>
                    <figure xlink:label="fig-0213-02" xlink:href="fig-0213-02a" number="264">
                      <image file="0213-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0213-02"/>
                    </figure>
                  lis proportioni
                    <var>.b.</var>
                  ad
                    <var>.d.</var>
                  ex prima parte ſecundi po
                    <lb/>
                  ſtulati diuiſim.</s>
                </p>
                <p>
                  <s xml:id="echoid-s2450" xml:space="preserve">Alia etiam ratione idipſum
                    <reg norm="demonſtrari" type="context">demõſtrari</reg>
                  poteſt,
                    <lb/>
                  ſumpto
                    <var>.b.</var>
                  pro medio termino inter
                    <var>.a.</var>
                  et .c: et
                    <var>.c.</var>
                    <lb/>
                  pro termino medio inter
                    <var>.b.</var>
                  et
                    <var>.d</var>
                  . </s>
                  <s xml:id="echoid-s2451" xml:space="preserve">quare propor-
                    <lb/>
                  tio
                    <var>.a.</var>
                  ad
                    <var>.c.</var>
                  componetur ex
                    <var>.a.</var>
                  ad
                    <var>.b.</var>
                  et
                    <var>.b.</var>
                  ad
                    <var>.c.</var>
                  illa
                    <lb/>
                  verò quæ eſt
                    <var>.b.</var>
                  ad
                    <var>.d.</var>
                  ex
                    <var>.b.</var>
                  ad
                    <var>.c.</var>
                  et
                    <var>.c.</var>
                  ad
                    <var>.d.</var>
                  ex .12. </s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>