Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
191 179
192 180
193 181
194 182
195 183
196 184
197 185
198 186
199 187
200 188
201 189
202 190
203 191
204 192
205 193
206 194
207 195
208 196
209 197
210 198
211 199
212 200
213 201
214 202
215 203
216 204
217 205
218 206
219 207
220 208
< >
page |< < (202) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div441" type="chapter" level="2" n="5">
            <div xml:id="echoid-div454" type="section" level="3" n="2">
              <div xml:id="echoid-div462" type="section" level="4" n="7">
                <p>
                  <s xml:id="echoid-s2451" xml:space="preserve">
                    <pb o="202" rhead="IO. BAPT. BENED." n="214" file="0214" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0214"/>
                  poſtulato. </s>
                  <s xml:id="echoid-s2452" xml:space="preserve">Sed cum proportio
                    <var>.a.</var>
                  ad
                    <var>.b.</var>
                  ęqualis ſit
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0214-01a" xlink:href="fig-0214-01"/>
                  proportioni
                    <var>.c.</var>
                  ad
                    <var>.d.</var>
                  communis autem
                    <var>.b.c</var>
                  : propor
                    <lb/>
                  tio. </s>
                  <s xml:id="echoid-s2453" xml:space="preserve">itaque
                    <var>.a.</var>
                  ad
                    <var>.c.</var>
                  æqualis erit
                    <var>.b.</var>
                  ad
                    <var>.d.</var>
                  ex ſecunda
                    <lb/>
                  parte .2. poſtulati compoſitè, & ſic habebimus pro
                    <lb/>
                  poſitum, ita quòd quotieſcunque
                    <reg norm="dabuntur" type="context">dabũtur</reg>
                  .4.
                    <reg norm="quam" type="context">quã</reg>
                    <lb/>
                  titates ex una parte proportionales, illæ ipſæ ex
                    <lb/>
                  altera proportionales erunt.</s>
                </p>
                <div xml:id="echoid-div463" type="float" level="5" n="2">
                  <figure xlink:label="fig-0214-01" xlink:href="fig-0214-01a">
                    <image file="0214-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0214-01"/>
                  </figure>
                </div>
              </div>
              <div xml:id="echoid-div465" type="section" level="4" n="8">
                <head xml:id="echoid-head348" xml:space="preserve">THEOR. XVII.</head>
                <p>
                  <s xml:id="echoid-s2454" xml:space="preserve">DEcimiſeptimi theorematis hæc eſt demonſtratio. </s>
                  <s xml:id="echoid-s2455" xml:space="preserve">Ita ſe ha beat
                    <var>a.c.b.</var>
                  ad
                    <var>.c.
                      <lb/>
                    b.</var>
                  ſicut ſe habet
                    <var>.d.f.e.</var>
                  ad
                    <var>.f.e</var>
                  . </s>
                  <s xml:id="echoid-s2456" xml:space="preserve">Probo ita ſe habere
                    <var>.a.c.</var>
                  ad
                    <var>.c.b.</var>
                  ſicut ſe habet
                    <var>.d.
                      <lb/>
                    f.</var>
                  ad
                    <var>.f.e</var>
                  . </s>
                  <s xml:id="echoid-s2457" xml:space="preserve">Cogitemus itaque alterum terminum ſcilicet
                    <var>.n.f.</var>
                  qui ſic ſe habeat. ad
                    <var>.f.e.</var>
                    <lb/>
                  ſicut ſe habet
                    <var>.a.c.</var>
                  ad
                    <var>.c.b</var>
                  . </s>
                  <s xml:id="echoid-s2458" xml:space="preserve">Quare ex præcedenti theoremate ita ſe habebit
                    <var>.a.c.</var>
                  ad
                    <var>.n.
                      <lb/>
                    f.</var>
                  ſicut ſe habet
                    <var>.c.b.</var>
                  ad
                    <var>.f.e.</var>
                  & ex .8 poſtulato ita ſe habebit
                    <var>.a.c.b.</var>
                  ad
                    <var>.n.f.e.</var>
                  ſicut ſe ha-
                    <lb/>
                  bet
                    <var>.c.b.</var>
                  ad
                    <var>.f.e</var>
                  . </s>
                  <s xml:id="echoid-s2459" xml:space="preserve">Sed cum ex præſuppoſito ita ſe habeat
                    <var>.a.c.b.</var>
                  ad
                    <var>.c.b.</var>
                  ſicut ſe habet
                    <var>.
                      <lb/>
                    d.f.e.</var>
                  ad
                    <var>.f.e.</var>
                  ideo ex præcedenti theoremate ita ſe habebit
                    <var>.a.c.b.</var>
                  ad
                    <var>.d.f.e.</var>
                  ſicut ſe ha
                    <lb/>
                  bet
                    <var>.c.b.</var>
                  ad
                    <var>.f.e.</var>
                  demonſtratum autem eſt ita ſe habere
                    <var>.c.b.</var>
                  ad
                    <var>.f.e.</var>
                  ſicut ſe habet
                    <var>.a.c.b.</var>
                    <lb/>
                  ad
                    <var>.n.f.e</var>
                  . </s>
                  <s xml:id="echoid-s2460" xml:space="preserve">Quare ex .7. poſtulato proportio
                    <var>.a.c.b.</var>
                  ad
                    <var>.d.f.</var>
                  e, æqualis erit proportioni
                    <var>.a.
                      <lb/>
                    c.b.</var>
                  ad
                    <var>.n.f.e.</var>
                  & ex .4. poſtulato
                    <var>.d.f.e.</var>
                  æqualis erit
                    <var>.n.f.e</var>
                  . </s>
                  <s xml:id="echoid-s2461" xml:space="preserve">Itaque ex 3. poſtulato primi
                    <lb/>
                  Euclidis
                    <var>.f.d.</var>
                  æqualis erit
                    <var>.n.f</var>
                  . </s>
                  <s xml:id="echoid-s2462" xml:space="preserve">Quamob
                    <lb/>
                  rem proportio
                    <var>.a.c.</var>
                  ad
                    <var>.d.f.</var>
                  ęqualis erit
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0214-02a" xlink:href="fig-0214-02"/>
                  proportioni
                    <var>.a.c.</var>
                  ad
                    <var>.n.f.</var>
                  ex ſecunda par-
                    <lb/>
                  te tertij axiomatis præmiſſi. </s>
                  <s xml:id="echoid-s2463" xml:space="preserve">Igitur ita
                    <lb/>
                  ſe habebit
                    <var>.a.c.</var>
                  ad
                    <var>.d.f.</var>
                  ſicut
                    <var>.c.b.</var>
                  ad
                    <var>.f.e.</var>
                  ex
                    <lb/>
                  7. poſtulato. </s>
                  <s xml:id="echoid-s2464" xml:space="preserve">& ſic ex præcedenti theo-
                    <lb/>
                  remate ita ſe habebit
                    <var>.a.c.</var>
                  ad
                    <var>.c.b.</var>
                  ſicut
                    <var>.d.f.</var>
                  ad
                    <var>.f.e.</var>
                  quod erat propoſitum: </s>
                  <s xml:id="echoid-s2465" xml:space="preserve">Quotieſ-
                    <lb/>
                  cunque igitur dabuntur .4. quantitates coniunctim proportionales, diuiſim quoque
                    <lb/>
                  proportionales erunt.</s>
                </p>
                <div xml:id="echoid-div465" type="float" level="5" n="1">
                  <figure xlink:label="fig-0214-02" xlink:href="fig-0214-02a">
                    <image file="0214-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0214-02"/>
                  </figure>
                </div>
              </div>
              <div xml:id="echoid-div467" type="section" level="4" n="9">
                <head xml:id="echoid-head349" xml:space="preserve">THEOREM. XVIII.</head>
                <p>
                  <s xml:id="echoid-s2466" xml:space="preserve">THeorema .18. hac ratione demonſtrari poteſt. </s>
                  <s xml:id="echoid-s2467" xml:space="preserve">Detur proportio
                    <var>.a.c.</var>
                  ad
                    <var>.c.b.</var>
                  ſi-
                    <lb/>
                  milis ei quæ eſt
                    <var>.d.f.</var>
                  ad
                    <var>.f.e.</var>
                  probo ita ſe habere
                    <var>.a.c.b.</var>
                  ad
                    <var>.c.b.</var>
                  ſicut ſe habet
                    <var>.d.f.
                      <lb/>
                    e.</var>
                  ad
                    <var>.f.e</var>
                  . </s>
                  <s xml:id="echoid-s2468" xml:space="preserve">In primis notum eſt ex .16. theoremate ita ſe habiturum,
                    <var>a.c.</var>
                  ad
                    <var>.d.f.</var>
                  ſi
                    <lb/>
                  cut
                    <var>.c.b.</var>
                  ad
                    <var>.f.e</var>
                  . </s>
                  <s xml:id="echoid-s2469" xml:space="preserve">Quare ex .8. poſtulato ita
                    <lb/>
                  ſe habebit
                    <var>.a.c.b.</var>
                  ad
                    <var>.d.f.e.</var>
                  ſicut
                    <var>.c.b.</var>
                  ad
                    <var>.f.e.</var>
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0214-03a" xlink:href="fig-0214-03"/>
                  </s>
                  <s xml:id="echoid-s2470" xml:space="preserve">Itaque ex .16. theoremate ita ſe habebit
                    <var>.
                      <lb/>
                    a.c.b.</var>
                  ad
                    <var>.c.b.</var>
                  ſicut
                    <var>.d.f.e.</var>
                  ad
                    <var>.f.e</var>
                  . </s>
                  <s xml:id="echoid-s2471" xml:space="preserve">Quod erat
                    <lb/>
                  propoſitum. </s>
                  <s xml:id="echoid-s2472" xml:space="preserve">Quotieſcunque igitur .4.
                    <lb/>
                  quantitates dabuntur vnius
                    <reg norm="eiuſdemque" type="simple">eiuſdemq́;</reg>
                  generis diſiunctim proportionales, coniun-
                    <lb/>
                  ctim quoque proportionales erunt.</s>
                </p>
                <div xml:id="echoid-div467" type="float" level="5" n="1">
                  <figure xlink:label="fig-0214-03" xlink:href="fig-0214-03a">
                    <image file="0214-03" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0214-03"/>
                  </figure>
                </div>
              </div>
              <div xml:id="echoid-div469" type="section" level="4" n="10">
                <head xml:id="echoid-head350" xml:space="preserve">THEOREM. XIX.</head>
                <p>
                  <s xml:id="echoid-s2473" xml:space="preserve">THeorema .19. ſatis quidem apud Euclidem demonſtratur: </s>
                  <s xml:id="echoid-s2474" xml:space="preserve">eius tamentertia
                    <lb/>
                  pars commodius hac ratione demonſtrari poterit (nempe) quod cum ſit pro- </s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>