Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
211 199
212 200
213 201
214 202
215 203
216 204
217 205
218 206
219 207
220 208
221 209
222 210
223 211
224 212
225 213
226 214
227 215
228 216
229 217
230 218
231 219
232 220
233 221
234 222
235 223
236 224
237 225
238 226
239 227
240 228
< >
page |< < (202) of 445 > >|
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div441" type="chapter" level="2" n="5">
            <div xml:id="echoid-div454" type="section" level="3" n="2">
              <div xml:id="echoid-div462" type="section" level="4" n="7">
                <p>
                  <s xml:id="echoid-s2451" xml:space="preserve">
                    <pb o="202" rhead="IO. BAPT. BENED." n="214" file="0214" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0214"/>
                  poſtulato. </s>
                  <s xml:id="echoid-s2452" xml:space="preserve">Sed cum proportio
                    <var>.a.</var>
                  ad
                    <var>.b.</var>
                  ęqualis ſit
                    <lb/>
                    <figure xlink:label="fig-0214-01" xlink:href="fig-0214-01a" number="265">
                      <image file="0214-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0214-01"/>
                    </figure>
                  proportioni
                    <var>.c.</var>
                  ad
                    <var>.d.</var>
                  communis autem
                    <var>.b.c</var>
                  : propor
                    <lb/>
                  tio. </s>
                  <s xml:id="echoid-s2453" xml:space="preserve">itaque
                    <var>.a.</var>
                  ad
                    <var>.c.</var>
                  æqualis erit
                    <var>.b.</var>
                  ad
                    <var>.d.</var>
                  ex ſecunda
                    <lb/>
                  parte .2. poſtulati compoſitè, & ſic habebimus pro
                    <lb/>
                  poſitum, ita quòd quotieſcunque
                    <reg norm="dabuntur" type="context">dabũtur</reg>
                  .4.
                    <reg norm="quam" type="context">quã</reg>
                    <lb/>
                  titates ex una parte proportionales, illæ ipſæ ex
                    <lb/>
                  altera proportionales erunt.</s>
                </p>
              </div>
              <div xml:id="echoid-div465" type="section" level="4" n="8">
                <head xml:id="echoid-head348" xml:space="preserve">THEOR. XVII.</head>
                <p>
                  <s xml:id="echoid-s2454" xml:space="preserve">DEcimiſeptimi theorematis hæc eſt demonſtratio. </s>
                  <s xml:id="echoid-s2455" xml:space="preserve">Ita ſe ha beat
                    <var>a.c.b.</var>
                  ad
                    <var>.c.
                      <lb/>
                    b.</var>
                  ſicut ſe habet
                    <var>.d.f.e.</var>
                  ad
                    <var>.f.e</var>
                  . </s>
                  <s xml:id="echoid-s2456" xml:space="preserve">Probo ita ſe habere
                    <var>.a.c.</var>
                  ad
                    <var>.c.b.</var>
                  ſicut ſe habet
                    <var>.d.
                      <lb/>
                    f.</var>
                  ad
                    <var>.f.e</var>
                  . </s>
                  <s xml:id="echoid-s2457" xml:space="preserve">Cogitemus itaque alterum terminum ſcilicet
                    <var>.n.f.</var>
                  qui ſic ſe habeat. ad
                    <var>.f.e.</var>
                    <lb/>
                  ſicut ſe habet
                    <var>.a.c.</var>
                  ad
                    <var>.c.b</var>
                  . </s>
                  <s xml:id="echoid-s2458" xml:space="preserve">Quare ex præcedenti theoremate ita ſe habebit
                    <var>.a.c.</var>
                  ad
                    <var>.n.
                      <lb/>
                    f.</var>
                  ſicut ſe habet
                    <var>.c.b.</var>
                  ad
                    <var>.f.e.</var>
                  & ex .8 poſtulato ita ſe habebit
                    <var>.a.c.b.</var>
                  ad
                    <var>.n.f.e.</var>
                  ſicut ſe ha-
                    <lb/>
                  bet
                    <var>.c.b.</var>
                  ad
                    <var>.f.e</var>
                  . </s>
                  <s xml:id="echoid-s2459" xml:space="preserve">Sed cum ex præſuppoſito ita ſe habeat
                    <var>.a.c.b.</var>
                  ad
                    <var>.c.b.</var>
                  ſicut ſe habet
                    <var>.
                      <lb/>
                    d.f.e.</var>
                  ad
                    <var>.f.e.</var>
                  ideo ex præcedenti theoremate ita ſe habebit
                    <var>.a.c.b.</var>
                  ad
                    <var>.d.f.e.</var>
                  ſicut ſe ha
                    <lb/>
                  bet
                    <var>.c.b.</var>
                  ad
                    <var>.f.e.</var>
                  demonſtratum autem eſt ita ſe habere
                    <var>.c.b.</var>
                  ad
                    <var>.f.e.</var>
                  ſicut ſe habet
                    <var>.a.c.b.</var>
                    <lb/>
                  ad
                    <var>.n.f.e</var>
                  . </s>
                  <s xml:id="echoid-s2460" xml:space="preserve">Quare ex .7. poſtulato proportio
                    <var>.a.c.b.</var>
                  ad
                    <var>.d.f.</var>
                  e, æqualis erit proportioni
                    <var>.a.
                      <lb/>
                    c.b.</var>
                  ad
                    <var>.n.f.e.</var>
                  & ex .4. poſtulato
                    <var>.d.f.e.</var>
                  æqualis erit
                    <var>.n.f.e</var>
                  . </s>
                  <s xml:id="echoid-s2461" xml:space="preserve">Itaque ex 3. poſtulato primi
                    <lb/>
                  Euclidis
                    <var>.f.d.</var>
                  æqualis erit
                    <var>.n.f</var>
                  . </s>
                  <s xml:id="echoid-s2462" xml:space="preserve">Quamob
                    <lb/>
                  rem proportio
                    <var>.a.c.</var>
                  ad
                    <var>.d.f.</var>
                  ęqualis erit
                    <lb/>
                    <figure xlink:label="fig-0214-02" xlink:href="fig-0214-02a" number="266">
                      <image file="0214-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0214-02"/>
                    </figure>
                  proportioni
                    <var>.a.c.</var>
                  ad
                    <var>.n.f.</var>
                  ex ſecunda par-
                    <lb/>
                  te tertij axiomatis præmiſſi. </s>
                  <s xml:id="echoid-s2463" xml:space="preserve">Igitur ita
                    <lb/>
                  ſe habebit
                    <var>.a.c.</var>
                  ad
                    <var>.d.f.</var>
                  ſicut
                    <var>.c.b.</var>
                  ad
                    <var>.f.e.</var>
                  ex
                    <lb/>
                  7. poſtulato. </s>
                  <s xml:id="echoid-s2464" xml:space="preserve">& ſic ex præcedenti theo-
                    <lb/>
                  remate ita ſe habebit
                    <var>.a.c.</var>
                  ad
                    <var>.c.b.</var>
                  ſicut
                    <var>.d.f.</var>
                  ad
                    <var>.f.e.</var>
                  quod erat propoſitum: </s>
                  <s xml:id="echoid-s2465" xml:space="preserve">Quotieſ-
                    <lb/>
                  cunque igitur dabuntur .4. quantitates coniunctim proportionales, diuiſim quoque
                    <lb/>
                  proportionales erunt.</s>
                </p>
              </div>
              <div xml:id="echoid-div467" type="section" level="4" n="9">
                <head xml:id="echoid-head349" xml:space="preserve">THEOREM. XVIII.</head>
                <p>
                  <s xml:id="echoid-s2466" xml:space="preserve">THeorema .18. hac ratione demonſtrari poteſt. </s>
                  <s xml:id="echoid-s2467" xml:space="preserve">Detur proportio
                    <var>.a.c.</var>
                  ad
                    <var>.c.b.</var>
                  ſi-
                    <lb/>
                  milis ei quæ eſt
                    <var>.d.f.</var>
                  ad
                    <var>.f.e.</var>
                  probo ita ſe habere
                    <var>.a.c.b.</var>
                  ad
                    <var>.c.b.</var>
                  ſicut ſe habet
                    <var>.d.f.
                      <lb/>
                    e.</var>
                  ad
                    <var>.f.e</var>
                  . </s>
                  <s xml:id="echoid-s2468" xml:space="preserve">In primis notum eſt ex .16. theoremate ita ſe habiturum,
                    <var>a.c.</var>
                  ad
                    <var>.d.f.</var>
                  ſi
                    <lb/>
                  cut
                    <var>.c.b.</var>
                  ad
                    <var>.f.e</var>
                  . </s>
                  <s xml:id="echoid-s2469" xml:space="preserve">Quare ex .8. poſtulato ita
                    <lb/>
                  ſe habebit
                    <var>.a.c.b.</var>
                  ad
                    <var>.d.f.e.</var>
                  ſicut
                    <var>.c.b.</var>
                  ad
                    <var>.f.e.</var>
                    <lb/>
                    <figure xlink:label="fig-0214-03" xlink:href="fig-0214-03a" number="267">
                      <image file="0214-03" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0214-03"/>
                    </figure>
                  </s>
                  <s xml:id="echoid-s2470" xml:space="preserve">Itaque ex .16. theoremate ita ſe habebit
                    <var>.
                      <lb/>
                    a.c.b.</var>
                  ad
                    <var>.c.b.</var>
                  ſicut
                    <var>.d.f.e.</var>
                  ad
                    <var>.f.e</var>
                  . </s>
                  <s xml:id="echoid-s2471" xml:space="preserve">Quod erat
                    <lb/>
                  propoſitum. </s>
                  <s xml:id="echoid-s2472" xml:space="preserve">Quotieſcunque igitur .4.
                    <lb/>
                  quantitates dabuntur vnius
                    <reg norm="eiuſdemque" type="simple">eiuſdemq́;</reg>
                  generis diſiunctim proportionales, coniun-
                    <lb/>
                  ctim quoque proportionales erunt.</s>
                </p>
              </div>
              <div xml:id="echoid-div469" type="section" level="4" n="10">
                <head xml:id="echoid-head350" xml:space="preserve">THEOREM. XIX.</head>
                <p>
                  <s xml:id="echoid-s2473" xml:space="preserve">THeorema .19. ſatis quidem apud Euclidem demonſtratur: </s>
                  <s xml:id="echoid-s2474" xml:space="preserve">eius tamentertia
                    <lb/>
                  pars commodius hac ratione demonſtrari poterit (nempe) quod cum ſit pro- </s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>