Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
221 209
222 210
223 211
224 212
225 213
226 214
227 215
228 216
229 217
230 218
231 219
232 220
233 221
234 222
235 223
236 224
237 225
238 226
239 227
240 228
241 229
242 230
243 231
244 232
245 233
246 234
247 235
248 236
249 237
250 238
< >
page |< < (212) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div480" type="section" level="3" n="2">
              <div xml:id="echoid-div480" type="letter" level="4" n="1">
                <p>
                  <s xml:id="echoid-s2658" xml:space="preserve">
                    <pb o="212" rhead="IO. BAPT. BENED." n="224" file="0224" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0224"/>
                  diametri ſint
                    <var>.q.d.</var>
                  et
                    <var>.a.b.</var>
                  quæ ſe inuicem interſecent in puncto
                    <var>.o.</var>
                  vnde cum anguli
                    <lb/>
                  contra ſe poſiti circa
                    <var>.o.</var>
                  æquales inuicem ſint ex .15. primi Eucli. </s>
                  <s xml:id="echoid-s2659" xml:space="preserve">& angulus
                    <var>.a.q.d.</var>
                  æ-
                    <lb/>
                  qualis angulo
                    <var>.a.b.d.</var>
                  & angulus
                    <var>.q.b.a.</var>
                  æqualis angulo
                    <var>.q.d.a.</var>
                  et
                    <var>.b.q.d.</var>
                  angulo
                    <var>.b.a.d.</var>
                    <lb/>
                  ex .20. tertij tunc triangulus
                    <var>.a.o.q.</var>
                  ſimilis erit triangulo
                    <var>.d.o.b.</var>
                  et
                    <var>.q.o.b.</var>
                  ſimilis trian-
                    <lb/>
                  gulo
                    <var>.a.o.d.</var>
                  ex definitione. </s>
                  <s xml:id="echoid-s2660" xml:space="preserve">Vnde eadem proportio erit ipſius
                    <var>.q.o.</var>
                  ad
                    <var>.b.o.</var>
                  quæ ipſius
                    <lb/>
                    <var>q.a.</var>
                  ad
                    <var>.b.d.</var>
                  & ipſius
                    <var>.b.o.</var>
                  ad
                    <var>.o.d.</var>
                  eadem quæ
                    <var>.q.b.</var>
                  ad
                    <var>.a.d.</var>
                  & ipſius
                    <var>.q.o.</var>
                  ad
                    <var>.o.a.</var>
                  eadem
                    <lb/>
                  quæ
                    <var>.q.b.</var>
                  ad
                    <var>.a.d.</var>
                  proportio igitur
                    <var>.q.o.</var>
                  ad
                    <var>.o.d.</var>
                  cognita nobis erit, vt compoſita ex
                    <lb/>
                  ea quæ eſt
                    <var>.q.o.</var>
                  ad
                    <var>.o.b.</var>
                  ex
                    <var>.o.b.</var>
                  ad
                    <var>.o.d.</var>
                  quæ nobis cognitę ſunt, mediante
                    <lb/>
                  proportione ipſius
                    <var>.q.a.</var>
                  ad
                    <var>.b.d.</var>
                  & ipſius
                    <var>.q.b.</var>
                  ad
                    <var>.a.d.</var>
                  proportio ſimiliter ipſius
                    <var>.b.o.</var>
                    <lb/>
                  ad
                    <var>.o.a.</var>
                  nobis cognita erit, vt compoſita ex proportione ipſius
                    <var>.b.o.</var>
                  ad
                    <var>.o.q.</var>
                  &
                    <lb/>
                  ipſius
                    <var>.o.q.</var>
                  ad
                    <var>.o.a.</var>
                  cognitis, mediante proportione ipſius
                    <var>.b.d.</var>
                  ad
                    <var>.q.a.</var>
                  & ipſius
                    <var>.q.b.</var>
                  ad
                    <lb/>
                    <var>a.d.</var>
                  cum
                    <reg norm="autem" type="context">autẽ</reg>
                  proportio ipſius
                    <var>.q.o.</var>
                  ad
                    <var>.o.b.</var>
                  nobis cognita ſit, </s>
                  <s xml:id="echoid-s2661" xml:space="preserve">tunc nobis cognita erit
                    <lb/>
                  proportio ipſius
                    <var>.q.d.</var>
                  ad
                    <var>.a.b</var>
                  . </s>
                  <s xml:id="echoid-s2662" xml:space="preserve">Nam ut
                    <var>.q.o.</var>
                  ad
                    <var>.o.b.</var>
                  eſt vt
                    <var>.a.o.</var>
                  ad
                    <var>.o.d.</var>
                  ex ſimilitudine,
                    <lb/>
                  </s>
                  <s xml:id="echoid-s2663" xml:space="preserve">quare proportio compoſiti ex primo, & quarto terminorum ad compoſitum ex .2. &
                    <lb/>
                  tertio, cognita erit. </s>
                  <s xml:id="echoid-s2664" xml:space="preserve">ſed quod fit ex
                    <var>.q.d.</var>
                  in
                    <var>.a.b.</var>
                  cognitum nobis eſt, vt æquale duobus
                    <lb/>
                  productis, hoc eſt ex
                    <var>.q.a.</var>
                  in
                    <var>.d.b.</var>
                  & ex
                    <var>.q.b.</var>
                  in
                    <var>.d.a.</var>
                  ex ſecunda primi Almageſti. </s>
                  <s xml:id="echoid-s2665" xml:space="preserve">quæ
                    <lb/>
                  producta nobis cognita ſunt, cum nobis data ſint eorum latera. </s>
                  <s xml:id="echoid-s2666" xml:space="preserve">Quapropter facta
                    <lb/>
                  cum fuerit figura quadrilatera rectangula ſimilis alicui alterirectangulæ figuræ pro
                    <lb/>
                  ductæ à duobus lateribus inuicem ita proportionatis, vt ſe habet
                    <var>.q.d.</var>
                  ad
                    <var>.a.b.</var>
                  æqua-
                    <lb/>
                  lis tamen duobus productis, hoc eſt producto ex
                    <var>.q.a.</var>
                  in
                    <var>.d.b.</var>
                  & ex
                    <var>.q.b.</var>
                  in
                    <var>.d.a.</var>
                  ex
                    <lb/>
                  doctrina, 25. ſexti Eucli quæ quidem figura, exempli gratia, ſit
                    <var>.u.t.</var>
                  eius verò latera
                    <lb/>
                  ſint
                    <var>.u.n.</var>
                  et
                    <var>.n.t.</var>
                  Hæc enim dico æqualia eſſe
                    <var>.q.d.</var>
                  et
                    <var>.b.a.</var>
                  hoc eſt
                    <var>.n.t.</var>
                  maius maio-
                    <lb/>
                  ri
                    <var>.b.a.</var>
                  et
                    <var>.u.n.</var>
                  minus minori
                    <var>.q.d</var>
                  . </s>
                  <s xml:id="echoid-s2667" xml:space="preserve">Quod ita probabo. </s>
                  <s xml:id="echoid-s2668" xml:space="preserve">cogitemus rectangulum
                    <var>.s.r.</var>
                    <lb/>
                  productum eſſe ex duobus lateribus
                    <var>.q.d.</var>
                  et
                    <var>.a.b.</var>
                  ſed,
                    <var>s.n.</var>
                  æqualis ſit
                    <var>.q.d.</var>
                  et
                    <var>.n.r.</var>
                  æqua-
                    <lb/>
                  lis
                    <var>.a.b.</var>
                    <reg norm="ſintque" type="simple">ſintq́;</reg>
                  duæ lineæ
                    <var>.s.n.</var>
                  et
                    <var>.n.t.</var>
                  inuicem directè coniunctæ, vnde
                    <var>.u.n.</var>
                  directè
                    <lb/>
                  coniuncta etiam erit cum
                    <var>.n.r.</var>
                  ex quo rectangulum
                    <var>.u.t.</var>
                  æquale erit rectangulo
                    <var>.s.r.</var>
                  ex
                    <lb/>
                  communi conceptu,
                    <reg norm="eademque" type="simple">eademq́</reg>
                  proportio erit
                    <var>.u.n.</var>
                  ad
                    <var>.n.t.</var>
                  quę
                    <var>.s.n.</var>
                  ad
                    <var>.n.r.</var>
                  eo
                    <reg norm="quod" type="simple">ꝙ</reg>
                  ita fa-
                    <lb/>
                  ctum fuit, cum autem ita ſit
                    <var>.u.n.</var>
                  ad
                    <var>.n.t.</var>
                  vt
                    <var>.s.n.</var>
                  ad
                    <var>.n.r.</var>
                  </s>
                  <s xml:id="echoid-s2669" xml:space="preserve">tunc permutando ita erit
                    <var>.n.t.</var>
                  ad
                    <lb/>
                    <var>n.r.</var>
                  vt
                    <var>.u.n.</var>
                  ad
                    <var>.n.s.</var>
                  ſed quia ita eſt
                    <var>.u.n.</var>
                  ad
                    <var>.n.r.</var>
                  vt
                    <var>.s.n.</var>
                  ad
                    <var>.n.t.</var>
                  ex 15. ſexti, </s>
                  <s xml:id="echoid-s2670" xml:space="preserve">tunc permutan
                    <lb/>
                  do ita erit
                    <var>.n.r.</var>
                  ad
                    <var>.n.t.</var>
                  vt
                    <var>.n.u.</var>
                  ad
                    <var>.n.s.</var>
                  </s>
                  <s xml:id="echoid-s2671" xml:space="preserve">quare ex 11. quinti ita erit
                    <var>.n.t.</var>
                  ad
                    <var>.n.r.</var>
                  vt
                    <var>.n.r.</var>
                  ad
                    <var>.n.
                      <lb/>
                    t.</var>
                  quapropter ex neceſſitate ſequitur
                    <var>.n.t.</var>
                  et
                    <var>.n.r.</var>
                  inuicem æquales eſſe, et
                    <var>.u.n.</var>
                  ſimiliter
                    <lb/>
                  cum
                    <var>.n.s</var>
                  .</s>
                </p>
                <div xml:id="echoid-div480" type="float" level="5" n="1">
                  <figure xlink:label="fig-0223-01" xlink:href="fig-0223-01a">
                    <image file="0223-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0223-01"/>
                  </figure>
                  <figure xlink:label="fig-0223-02" xlink:href="fig-0223-02a">
                    <image file="0223-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0223-02"/>
                  </figure>
                  <figure xlink:label="fig-0223-03" xlink:href="fig-0223-03a">
                    <image file="0223-03" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0223-03"/>
                  </figure>
                  <figure xlink:label="fig-0223-04" xlink:href="fig-0223-04a">
                    <image file="0223-04" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0223-04"/>
                  </figure>
                  <figure xlink:label="fig-0223-05" xlink:href="fig-0223-05a">
                    <image file="0223-05" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0223-05"/>
                  </figure>
                </div>
                <p>
                  <s xml:id="echoid-s2672" xml:space="preserve">Inuentæ nunc cum fuerint duæ diametri
                    <var>.q.d.</var>
                  et
                    <var>.a.b.</var>
                  ipſius quadrilateri, difficile
                    <lb/>
                  non erit eius angulos inuenire, eo
                    <reg norm="quod" type="simple">ꝙ</reg>
                  mediante
                    <var>.a.b.</var>
                  cognita, ſimul cum
                    <var>.b.d.</var>
                  et
                    <var>.a.d.</var>
                  da
                    <lb/>
                  tis, faciemus triangulum
                    <var>.a.b.d.</var>
                  vel
                    <reg norm="mediante" type="context">mediãte</reg>
                    <var>.q.d.</var>
                  et
                    <var>.q.a.</var>
                  et
                    <var>.a.d.</var>
                  cognitis faciemus
                    <reg norm="triam" type="context">triã</reg>
                    <lb/>
                  gulum
                    <var>.a.q.d.</var>
                  ex .22. primi. </s>
                  <s xml:id="echoid-s2673" xml:space="preserve">Vnde cum centrum circuli circunſcriptibilis cuiuſuis di-
                    <lb/>
                  ctorum triangulorum ex quinta quarti inuentum fuerit, triangulum reliquum, ab eo
                    <lb/>
                  dem circulo circunſcriptum erit, ex communi ſcientia.</s>
                </p>
                <p>
                  <s xml:id="echoid-s2674" xml:space="preserve">SEd vt ipſa operatio facilior fiat, Sint eędem lineæ
                    <var>.b.d</var>
                  :
                    <var>b.q</var>
                  :
                    <var>a.q.</var>
                  et
                    <var>.a.d.</var>
                  ex quibus
                    <lb/>
                  poſſit
                    <reg norm="quadrilaterum" type="context">quadrilaterũ</reg>
                  effici. </s>
                  <s xml:id="echoid-s2675" xml:space="preserve">Videatur deinde primò quas volumus oppoſitas ſibi
                    <lb/>
                  inuicem eſſe, ponatur ergò ut
                    <var>.q.a.</var>
                  et
                    <var>.b.d.</var>
                  velimus oppoſitas inuicem facere, et
                    <var>.q.b.</var>
                    <lb/>
                  cum
                    <var>.a.d.</var>
                  ſimiliter, accipiemus nunc
                    <var>.K.</var>
                  cuiuſuis magnitudinis, cui comparetur
                    <var>.e.</var>
                    <lb/>
                  ita proportionata, vt
                    <var>.q.b.</var>
                  eſt ipſi
                    <var>.a.d.</var>
                  ex doctrina .10. ſexti Eucli. vel accipiatur
                    <var>.a.d.</var>
                    <lb/>
                  vice
                    <var>.K.</var>
                  et
                    <var>.q.b.</var>
                  vice
                    <var>.e.</var>
                  quod idem erit, & expeditius, inuenietur ſimiliter
                    <var>.h.</var>
                  ita pro-
                    <lb/>
                  portionata ad
                    <var>.e.</var>
                  et
                    <var>.g.</var>
                  ad
                    <var>.k.</var>
                  vt
                    <var>.b.d.</var>
                  eſt ad
                    <var>.q.a.</var>
                  vel
                    <var>.g.</var>
                  ad
                    <var>.h.</var>
                  vt
                    <var>.a.d.</var>
                  ipſi
                    <var>.q.b.</var>
                  quod
                    <reg norm="idem" type="context">idẽ</reg>
                  erit.</s>
                </p>
                <p>
                  <s xml:id="echoid-s2676" xml:space="preserve">Hoc facto coniungantur inuicem directè
                    <var>.g.</var>
                  et
                    <var>.e.</var>
                  quarum compoſitum ſit
                    <var>.g.e.</var>
                  &
                    <lb/>
                  ita duæ
                    <var>.K.</var>
                  et
                    <var>.h.</var>
                  ex quibus ſit
                    <var>.K.h</var>
                  . </s>
                  <s xml:id="echoid-s2677" xml:space="preserve">Nunc ex iſtis duabus lineis
                    <var>.e.g.</var>
                  et
                    <var>K.h.</var>
                  fiat paral- </s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>