Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
231 219
232 220
233 221
234 222
235 223
236 224
237 225
238 226
239 227
240 228
241 229
242 230
243 231
244 232
245 233
246 234
247 235
248 236
249 237
250 238
251 239
252 240
253 241
254 242
255 243
256 244
257 245
258 246
259 247
260 248
< >
page |< < (251) of 445 > >|
EPISTOLAE.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div495" type="section" level="3" n="5">
              <div xml:id="echoid-div501" type="letter" level="4" n="3">
                <p>
                  <s xml:id="echoid-s3163" xml:space="preserve">
                    <pb o="251" rhead="EPISTOLAE." n="263" file="0263" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0263"/>
                  terius differentiæ quam ſupra inuenerimus.</s>
                </p>
                <div xml:id="echoid-div501" type="float" level="5" n="1">
                  <figure xlink:label="fig-0262-01" xlink:href="fig-0262-01a">
                    <image file="0262-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0262-01"/>
                  </figure>
                  <figure xlink:label="fig-0262-02" xlink:href="fig-0262-02a">
                    <image file="0262-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0262-02"/>
                  </figure>
                </div>
                <p>
                  <s xml:id="echoid-s3164" xml:space="preserve">Superius enim dixinon eſſe ponendum polum in
                    <var>.B.</var>
                  eo quod
                    <var>.B.C.</var>
                  ſit gra .89. mi
                    <num value="30">.
                      <lb/>
                    30.</num>
                  vnde nobis prodijſſet triangulus
                    <var>.f.C.D.</var>
                  trium valde paruorum laterum, quorum
                    <lb/>
                  latus
                    <var>.C.D.</var>
                  eſſet gra
                    <var>.o.</var>
                  mi .30. & latus
                    <var>.f.l.</var>
                  gra
                    <var>.o.</var>
                  mi .55. & latus
                    <var>.F.D.</var>
                  gra
                    <var>.o.</var>
                  mi .47. vn-
                    <lb/>
                  de angulus
                    <var>.f.</var>
                  gra .32. min .40. falſus eſſet, qui
                    <reg norm="quidem" type="context">quidẽ</reg>
                  poſtea nobis daret
                    <var>.D.E.</var>
                  gra .45
                    <lb/>
                  minu .16. falſum ſimiliter.</s>
                </p>
              </div>
              <div xml:id="echoid-div503" type="letter" level="4" n="4">
                <head xml:id="echoid-head378" style="it" xml:space="preserve">De paßione circuli bactenus incognita.</head>
                <head xml:id="echoid-head379" xml:space="preserve">AD EVNDEM.</head>
                <p>
                  <s xml:id="echoid-s3165" xml:space="preserve">DVbitandum quidem
                    <reg norm="non" type="context">nõ</reg>
                  eſt quin paſſiones circuli innumerabiles penè ſint, quę
                    <lb/>
                  quidem omnes ferè caſu inueniuntur, vt mihi nunc accidit, quam tibi mitto,
                    <lb/>
                  hæc autem eſt, quòd quadratum lineæ
                    <var>.a.g.</var>
                  in figura hic ſubſcripta ſemper æquale
                    <lb/>
                  eſt ei producto, quod fit ex
                    <var>.a.e.</var>
                  in diametro circuli
                    <var>.g.c.b.</var>
                  ſimul ſumpto cum quadra
                    <lb/>
                  to inſcriptibili in dicto circulo, & ſimul cum quadrato lineæ
                    <var>.a.b.</var>
                    <reg norm="contingentis" type="context">contingẽtis</reg>
                  ipſum
                    <lb/>
                  circulum, ſupponendo
                    <var>.a.g.</var>
                  per centrum ipſius circuli tranſire.</s>
                </p>
                <p>
                  <s xml:id="echoid-s3166" xml:space="preserve">Pro cuius demonſtratione à centro
                    <var>.e.</var>
                  duco ſemidiametrum
                    <var>.e.c.</var>
                    <reg norm="perpendicularem" type="context">perpendicularẽ</reg>
                    <lb/>
                  ipſi
                    <var>.g.a.</var>
                  & à puncto
                    <var>.c.</var>
                  ad
                    <var>.a.</var>
                  duco
                    <var>.c.a.</var>
                  quæ ſecabit circunferentiam ipſius circuli in
                    <reg norm="pum" type="context">pũ</reg>
                    <lb/>
                  cto
                    <var>.d.</var>
                  eo, quod angulus
                    <var>.c.</var>
                  acutus eſt. </s>
                  <s xml:id="echoid-s3167" xml:space="preserve">Nunc ex .35. tertij, productum
                    <var>.c.a.</var>
                  in
                    <var>.a.d.</var>
                  æqua
                    <lb/>
                  le eſt quadrato
                    <var>.a.b.</var>
                  productum autem
                    <var>.a.c.</var>
                  in
                    <var>.d.c.</var>
                  æquale eſt quadrato inſcriptibili in
                    <lb/>
                  circulo
                    <var>.g.c.b.</var>
                  ex .130. primi Vitellionis,
                    <reg norm="in" type="wordlist">ĩ</reg>
                  qua propoſitione ipſe Vitellio ſupplet pro
                    <lb/>
                  eo, quod in quinta propoſitione libri de lineis ſpirabilibus Archimedis deſideratur,
                    <lb/>
                  ſed quadratum
                    <var>.a.c.</var>
                  æquale eſt ijs duobus productis. per .2. ſecundi Eucli. ergo qua-
                    <lb/>
                  dratum
                    <var>.a.c.</var>
                  æquale erit quadrato inſcriptibili in circulo
                    <var>.d.c.g.</var>
                  & quadrato
                    <var>.a.b.</var>
                  ſed
                    <lb/>
                  quadratum lineæ
                    <var>.a.c.</var>
                  æquale eſt duobus quadratis, hoc eſt lineæ
                    <var>.a.e.</var>
                  & lineæ
                    <var>.e.c.</var>
                  ex
                    <lb/>
                  pitagorica, </s>
                  <s xml:id="echoid-s3168" xml:space="preserve">quare ex communi conceptu duo quadrata lineæ
                    <var>.a.e.</var>
                  & lineę
                    <var>.e.c.</var>
                  hoc eſt
                    <lb/>
                  lineæ
                    <var>.e.g.</var>
                  quod idem eſt, æqualia erunt duobus iam dictis, hoc eſt inſcriptibili,
                    <lb/>
                  & ei, quod fit ex
                    <var>.a.b.</var>
                  ſed quadratum lineæ
                    <var>.a.g.</var>
                  æquale eſt quadrato lineæ
                    <var>.a.e.</var>
                  & qua
                    <lb/>
                  drato quod fit ex
                    <var>.e.g.</var>
                  & duplo illius quod fit ex
                    <var>.a.e.</var>
                  in
                    <var>.e.g.</var>
                  hoc eſt producto
                    <var>.a.e.</var>
                  in
                    <lb/>
                  diametrum. </s>
                  <s xml:id="echoid-s3169" xml:space="preserve">Quare quadratum lineæ
                    <var>.a.g.</var>
                  æquale eſt quadrato circunſcriptibili, &
                    <lb/>
                  quadrato lineæ
                    <var>.a.b.</var>
                  & producto lineæ
                    <var>.a.e.</var>
                  in diametrum circuli
                    <var>.d.c.g</var>
                  .</s>
                </p>
                <p>
                  <s xml:id="echoid-s3170" xml:space="preserve">Breuiori etiam methodo demonſtrare poſſu
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0263-01a" xlink:href="fig-0263-01"/>
                  mus quadrata lineæ
                    <var>.a.e.</var>
                  et
                    <var>.e.g.</var>
                  æqualia eſ-
                    <lb/>
                  ſe quadrato circunſcriptibili, & quadrato lineæ
                    <var>.
                      <lb/>
                    a.b.</var>
                  ducendo lineam
                    <var>.e.b.</var>
                  quæ æqualis eſt lineæ
                    <var>.
                      <lb/>
                    e.g.</var>
                  tali methodo, hoc eſt, conſiderando, quod
                    <lb/>
                  quadratum inſcriptibile ſemper duplum eſt qua
                    <lb/>
                  drato ſemidiametri, vel medietati circumſcri-
                    <lb/>
                  ptibili, quod quidem nihil aliud eſt, niſi æquale
                    <lb/>
                  eſſe ijs duobus quadratis, hoc eſt lineæ
                    <var>.e.b.</var>
                  & li-
                    <lb/>
                  neæ
                    <var>.e.g.</var>
                  ſed quadratum lineæ
                    <var>.a.e.</var>
                  æquale eſt iis
                    <lb/>
                  duobus quadratis, hoc eſt lineæ
                    <var>.a.b.</var>
                  & lineæ
                    <var>.b.e.</var>
                  vnde quadrat um lineæ
                    <var>.a.e.</var>
                  cum
                    <lb/>
                  quadrato lineæ
                    <var>.e.g.</var>
                  æquale eſt quadrato circunſcriptibili, ſimul collecto cum qua-
                    <lb/>
                  drato lineæ
                    <var>.a.b</var>
                  .</s>
                </p>
                <div xml:id="echoid-div503" type="float" level="5" n="1">
                  <figure xlink:label="fig-0263-01" xlink:href="fig-0263-01a">
                    <image file="0263-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0263-01"/>
                  </figure>
                </div>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>