Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
171 159
172 160
173 161
174 162
175 163
176 164
177 165
178 166
179 167
180 168
181 169
182 170
183 171
184 172
185 173
186 174
187 175
188 176
189 177
190 178
191 179
192 180
193 181
194 182
195 183
196 184
197 185
198 186
199 187
200 188
< >
page |< < (253) of 445 > >|
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div495" type="section" level="3" n="5">
              <div xml:id="echoid-div505" type="letter" level="4" n="5">
                <p>
                  <s xml:id="echoid-s3184" xml:space="preserve">
                    <pb o="253" rhead="EPISTOLAE." n="265" file="0265" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0265"/>
                  angulo
                    <var>.b.u.e.</var>
                  vnde ex .4. ſexti eadem proportio erit ipſius
                    <var>.b.n.</var>
                  ad
                    <var>.b.e.</var>
                  quæ
                    <var>.b.e.</var>
                  ad
                    <lb/>
                    <var>b.u</var>
                  . </s>
                  <s xml:id="echoid-s3185" xml:space="preserve">quare ex .16. eiuſdem patebit propoſitum.</s>
                </p>
                <p>
                  <s xml:id="echoid-s3186" xml:space="preserve">Secundus autem modus ita ſe habet, ducta
                    <var>.q.n.</var>
                  habebimus duo triangula ortho-
                    <lb/>
                  gonia ſimilia inuicem
                    <var>.b.q.n.</var>
                  et
                    <var>.b.u.o.</var>
                  eo quod angulus
                    <var>.b.</var>
                  communis ambobus exi-
                    <lb/>
                  ſtit, </s>
                  <s xml:id="echoid-s3187" xml:space="preserve">quare ex .4. ſexti ita ſe habebit
                    <var>.u.b.</var>
                  ad
                    <var>.b.o.</var>
                  vt
                    <var>.q.b.</var>
                  ad
                    <var>.b.n.</var>
                  vnde ex .15. eiuſdem
                    <lb/>
                  quod fit ex
                    <var>.u.b.</var>
                  in
                    <var>.b.n.</var>
                  æquale erit ei, quod fit ex
                    <var>.q.b.</var>
                  in
                    <var>.b.o</var>
                  . </s>
                  <s xml:id="echoid-s3188" xml:space="preserve">Sed ex .16. eiuſdem,
                    <reg norm="quod" type="simple">ꝙ</reg>
                    <lb/>
                  fit ex
                    <var>.q.b.</var>
                  in
                    <var>.b.o.</var>
                  ęquatur quadrato
                    <var>.b.e.</var>
                  quia
                    <var>.b.e.</var>
                  media proportionalis eſt inter dia
                    <lb/>
                  metrum & ſemidiametrum eiuſdem circuli. ex .4. eiuſdem, </s>
                  <s xml:id="echoid-s3189" xml:space="preserve">quare quod fit ex
                    <var>.u.b.</var>
                  in
                    <lb/>
                    <var>b.n.</var>
                  æquale erit quadrato ipſius
                    <var>.b.e</var>
                  .</s>
                </p>
                <p>
                  <s xml:id="echoid-s3190" xml:space="preserve">Tertius modus adiungitur, & eſt quod cum quadratum
                    <var>.u.b.</var>
                  exiſtente
                    <var>.u.</var>
                  extra cir-
                    <lb/>
                  culum æquale ſit ei, quod ſit ex
                    <var>.u.b.</var>
                  in
                    <var>.b.n.</var>
                  ſimul ſumpto cum eo,
                    <reg norm="quod" type="simple">ꝙ</reg>
                  fit ex
                    <var>.u.b.</var>
                  in
                    <var>.u.n.</var>
                    <lb/>
                  ex ſecunda ſecundi, & idem quadratum
                    <var>.u.b.</var>
                  æquale duobus quadratis
                    <var>.u.o.</var>
                  et
                    <var>.o.b.</var>
                  ex
                    <lb/>
                  penultima primi, ideo duo dicta producta æqualia erunt dictis duobus quadratis
                    <var>.o.</var>
                    <lb/>
                    <figure xlink:label="fig-0265-01" xlink:href="fig-0265-01a" number="298">
                      <image file="0265-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0265-01"/>
                    </figure>
                  u. ſcilicet et
                    <var>.o.b.</var>
                  ſed quadratum
                    <lb/>
                  o u. æquatur ei, quod fit ex
                    <var>.a.u.</var>
                    <lb/>
                  in
                    <var>.e.u.</var>
                  & ei quod fit. ex
                    <var>.o.e.</var>
                  in ſe
                    <lb/>
                  ipſam ex .6. ſecundi, </s>
                  <s xml:id="echoid-s3191" xml:space="preserve">quare duo
                    <lb/>
                    <reg norm="iam" type="context">iã</reg>
                  dicta producta æqualia erunt
                    <lb/>
                  duobus dictis quadratis,
                    <var>o.b.</var>
                  ſci
                    <lb/>
                  licet. et
                    <var>.o.e.</var>
                  & ei quod fit ex
                    <var>.a.
                      <lb/>
                    u.</var>
                  in
                    <var>.u.e.</var>
                  ſed quod fit ex
                    <var>b.u.</var>
                  in
                    <var>.u
                      <lb/>
                    n.</var>
                  æquale eſt ei quod fit ex
                    <var>.a.u.</var>
                    <lb/>
                  in
                    <var>.u.e.</var>
                  ex .35. 3.
                    <reg norm="relinquitur" type="simple">relinquit̃</reg>
                  ergo
                    <lb/>
                  vt id
                    <reg norm="quod" type="wordlist">qđ</reg>
                  fit ex
                    <var>.u.b.</var>
                  in
                    <var>.b.n.</var>
                  æqua-
                    <lb/>
                  le ſit
                    <reg norm="duobus" type="simple">duobꝰ</reg>
                  quadratis
                    <var>.o.b.</var>
                  et
                    <var>.o.
                      <lb/>
                    e</var>
                  . </s>
                  <s xml:id="echoid-s3192" xml:space="preserve">quare & quadrato ipſius
                    <var>.b.e.</var>
                    <lb/>
                  ex Pitagorica.</s>
                </p>
                <p>
                  <s xml:id="echoid-s3193" xml:space="preserve">Siautem
                    <reg norm="punctum" type="context context">pũctũ</reg>
                    <var>.u.</var>
                  fuiſſet intra
                    <lb/>
                  circulum idem eueniret. </s>
                  <s xml:id="echoid-s3194" xml:space="preserve">Nam
                    <lb/>
                  quadrato
                    <var>.b.e.</var>
                    <reg norm="æquantur" type="context">æquãtur</reg>
                  duo qua
                    <lb/>
                  drata
                    <var>.o.b.</var>
                  et
                    <var>.o.e.</var>
                  ſed vice qua-
                    <lb/>
                  drati
                    <var>.o.e.</var>
                  dicemus
                    <reg norm="quadratum" type="context">quadratũ</reg>
                    <var>.o.
                      <lb/>
                    u.</var>
                  cum eo quod fit ex
                    <var>.a.u.</var>
                  in
                    <var>.u.e.</var>
                    <lb/>
                  ex .5. ſecundi, id eſt quadratum
                    <var>.
                      <lb/>
                    o.u.</var>
                    <reg norm="cum" type="context">cũ</reg>
                  eo quod fit ex
                    <var>.b.u.</var>
                  in
                    <var>.u.
                      <lb/>
                    n.</var>
                  ex .34. tertij, vnde quadratum
                    <lb/>
                    <var>b.e.</var>
                  æquale erit quadrato
                    <var>.o.b.</var>
                    <lb/>
                  & quadrato
                    <var>.o.u.</var>
                  ideſt quadrato
                    <lb/>
                    <var>b.u.</var>
                  ex Pitagorica ſimul
                    <reg norm="cum" type="context">cũ</reg>
                  pro-
                    <lb/>
                  ducto
                    <var>.b.u.</var>
                  in
                    <var>.u.n.</var>
                  ideſt producto
                    <lb/>
                    <var>n.b.</var>
                  in
                    <var>.b.u.</var>
                  quod æquale eſt qua
                    <lb/>
                  drat
                    <var>o.b.u.</var>
                  cum producto
                    <var>.b.u.</var>
                  in
                    <lb/>
                    <var>u.n.</var>
                  ex .3. ſecundi.</s>
                </p>
                <p>
                  <s xml:id="echoid-s3195" xml:space="preserve">Circa tres paſſiones commu-
                    <lb/>
                  nes poſtea circulo hyperboli, &
                    <lb/>
                  defectioni notandum eſt
                    <reg norm="primam" type="context">primã</reg>
                    <lb/>
                  patere ex .36: primi Pergei, ſe- </s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>