Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
231 219
232 220
233 221
234 222
235 223
236 224
237 225
238 226
239 227
240 228
241 229
242 230
243 231
244 232
245 233
246 234
247 235
248 236
249 237
250 238
251 239
252 240
253 241
254 242
255 243
256 244
257 245
258 246
259 247
260 248
< >
page |< < (253) of 445 > >|
EPISTOLAE.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div495" type="section" level="3" n="5">
              <div xml:id="echoid-div505" type="letter" level="4" n="5">
                <p>
                  <s xml:id="echoid-s3184" xml:space="preserve">
                    <pb o="253" rhead="EPISTOLAE." n="265" file="0265" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0265"/>
                  angulo
                    <var>.b.u.e.</var>
                  vnde ex .4. ſexti eadem proportio erit ipſius
                    <var>.b.n.</var>
                  ad
                    <var>.b.e.</var>
                  quæ
                    <var>.b.e.</var>
                  ad
                    <lb/>
                    <var>b.u</var>
                  . </s>
                  <s xml:id="echoid-s3185" xml:space="preserve">quare ex .16. eiuſdem patebit propoſitum.</s>
                </p>
                <p>
                  <s xml:id="echoid-s3186" xml:space="preserve">Secundus autem modus ita ſe habet, ducta
                    <var>.q.n.</var>
                  habebimus duo triangula ortho-
                    <lb/>
                  gonia ſimilia inuicem
                    <var>.b.q.n.</var>
                  et
                    <var>.b.u.o.</var>
                  eo quod angulus
                    <var>.b.</var>
                  communis ambobus exi-
                    <lb/>
                  ſtit, </s>
                  <s xml:id="echoid-s3187" xml:space="preserve">quare ex .4. ſexti ita ſe habebit
                    <var>.u.b.</var>
                  ad
                    <var>.b.o.</var>
                  vt
                    <var>.q.b.</var>
                  ad
                    <var>.b.n.</var>
                  vnde ex .15. eiuſdem
                    <lb/>
                  quod fit ex
                    <var>.u.b.</var>
                  in
                    <var>.b.n.</var>
                  æquale erit ei, quod fit ex
                    <var>.q.b.</var>
                  in
                    <var>.b.o</var>
                  . </s>
                  <s xml:id="echoid-s3188" xml:space="preserve">Sed ex .16. eiuſdem,
                    <reg norm="quod" type="simple">ꝙ</reg>
                    <lb/>
                  fit ex
                    <var>.q.b.</var>
                  in
                    <var>.b.o.</var>
                  ęquatur quadrato
                    <var>.b.e.</var>
                  quia
                    <var>.b.e.</var>
                  media proportionalis eſt inter dia
                    <lb/>
                  metrum & ſemidiametrum eiuſdem circuli. ex .4. eiuſdem, </s>
                  <s xml:id="echoid-s3189" xml:space="preserve">quare quod fit ex
                    <var>.u.b.</var>
                  in
                    <lb/>
                    <var>b.n.</var>
                  æquale erit quadrato ipſius
                    <var>.b.e</var>
                  .</s>
                </p>
                <p>
                  <s xml:id="echoid-s3190" xml:space="preserve">Tertius modus adiungitur, & eſt quod cum quadratum
                    <var>.u.b.</var>
                  exiſtente
                    <var>.u.</var>
                  extra cir-
                    <lb/>
                  culum æquale ſit ei, quod ſit ex
                    <var>.u.b.</var>
                  in
                    <var>.b.n.</var>
                  ſimul ſumpto cum eo,
                    <reg norm="quod" type="simple">ꝙ</reg>
                  fit ex
                    <var>.u.b.</var>
                  in
                    <var>.u.n.</var>
                    <lb/>
                  ex ſecunda ſecundi, & idem quadratum
                    <var>.u.b.</var>
                  æquale duobus quadratis
                    <var>.u.o.</var>
                  et
                    <var>.o.b.</var>
                  ex
                    <lb/>
                  penultima primi, ideo duo dicta producta æqualia erunt dictis duobus quadratis
                    <var>.o.</var>
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0265-01a" xlink:href="fig-0265-01"/>
                  u. ſcilicet et
                    <var>.o.b.</var>
                  ſed quadratum
                    <lb/>
                  o u. æquatur ei, quod fit ex
                    <var>.a.u.</var>
                    <lb/>
                  in
                    <var>.e.u.</var>
                  & ei quod fit. ex
                    <var>.o.e.</var>
                  in ſe
                    <lb/>
                  ipſam ex .6. ſecundi, </s>
                  <s xml:id="echoid-s3191" xml:space="preserve">quare duo
                    <lb/>
                    <reg norm="iam" type="context">iã</reg>
                  dicta producta æqualia erunt
                    <lb/>
                  duobus dictis quadratis,
                    <var>o.b.</var>
                  ſci
                    <lb/>
                  licet. et
                    <var>.o.e.</var>
                  & ei quod fit ex
                    <var>.a.
                      <lb/>
                    u.</var>
                  in
                    <var>.u.e.</var>
                  ſed quod fit ex
                    <var>b.u.</var>
                  in
                    <var>.u
                      <lb/>
                    n.</var>
                  æquale eſt ei quod fit ex
                    <var>.a.u.</var>
                    <lb/>
                  in
                    <var>.u.e.</var>
                  ex .35. 3.
                    <reg norm="relinquitur" type="simple">relinquit̃</reg>
                  ergo
                    <lb/>
                  vt id
                    <reg norm="quod" type="wordlist">qđ</reg>
                  fit ex
                    <var>.u.b.</var>
                  in
                    <var>.b.n.</var>
                  æqua-
                    <lb/>
                  le ſit
                    <reg norm="duobus" type="simple">duobꝰ</reg>
                  quadratis
                    <var>.o.b.</var>
                  et
                    <var>.o.
                      <lb/>
                    e</var>
                  . </s>
                  <s xml:id="echoid-s3192" xml:space="preserve">quare & quadrato ipſius
                    <var>.b.e.</var>
                    <lb/>
                  ex Pitagorica.</s>
                </p>
                <div xml:id="echoid-div505" type="float" level="5" n="1">
                  <figure xlink:label="fig-0265-01" xlink:href="fig-0265-01a">
                    <image file="0265-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0265-01"/>
                  </figure>
                </div>
                <p>
                  <s xml:id="echoid-s3193" xml:space="preserve">Siautem
                    <reg norm="punctum" type="context context">pũctũ</reg>
                    <var>.u.</var>
                  fuiſſet intra
                    <lb/>
                  circulum idem eueniret. </s>
                  <s xml:id="echoid-s3194" xml:space="preserve">Nam
                    <lb/>
                  quadrato
                    <var>.b.e.</var>
                    <reg norm="æquantur" type="context">æquãtur</reg>
                  duo qua
                    <lb/>
                  drata
                    <var>.o.b.</var>
                  et
                    <var>.o.e.</var>
                  ſed vice qua-
                    <lb/>
                  drati
                    <var>.o.e.</var>
                  dicemus
                    <reg norm="quadratum" type="context">quadratũ</reg>
                    <var>.o.
                      <lb/>
                    u.</var>
                  cum eo quod fit ex
                    <var>.a.u.</var>
                  in
                    <var>.u.e.</var>
                    <lb/>
                  ex .5. ſecundi, id eſt quadratum
                    <var>.
                      <lb/>
                    o.u.</var>
                    <reg norm="cum" type="context">cũ</reg>
                  eo quod fit ex
                    <var>.b.u.</var>
                  in
                    <var>.u.
                      <lb/>
                    n.</var>
                  ex .34. tertij, vnde quadratum
                    <lb/>
                    <var>b.e.</var>
                  æquale erit quadrato
                    <var>.o.b.</var>
                    <lb/>
                  & quadrato
                    <var>.o.u.</var>
                  ideſt quadrato
                    <lb/>
                    <var>b.u.</var>
                  ex Pitagorica ſimul
                    <reg norm="cum" type="context">cũ</reg>
                  pro-
                    <lb/>
                  ducto
                    <var>.b.u.</var>
                  in
                    <var>.u.n.</var>
                  ideſt producto
                    <lb/>
                    <var>n.b.</var>
                  in
                    <var>.b.u.</var>
                  quod æquale eſt qua
                    <lb/>
                  drat
                    <var>o.b.u.</var>
                  cum producto
                    <var>.b.u.</var>
                  in
                    <lb/>
                    <var>u.n.</var>
                  ex .3. ſecundi.</s>
                </p>
                <p>
                  <s xml:id="echoid-s3195" xml:space="preserve">Circa tres paſſiones commu-
                    <lb/>
                  nes poſtea circulo hyperboli, &
                    <lb/>
                  defectioni notandum eſt
                    <reg norm="primam" type="context">primã</reg>
                    <lb/>
                  patere ex .36: primi Pergei, ſe- </s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>