Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
141 129
142 130
143 131
144 132
145 133
146 134
147 135
148 136
149 137
150 138
151 139
152 140
153 141
154 142
155 143
156 144
157 145
158 146
159 147
160 148
161 149
162 150
163 151
164 152
165 153
166 154
167 155
168 156
169 157
170 158
< >
page |< < (254) of 445 > >|
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div495" type="section" level="3" n="5">
              <div xml:id="echoid-div505" type="letter" level="4" n="5">
                <p>
                  <s xml:id="echoid-s3195" xml:space="preserve">
                    <pb o="254" rhead="IO. BABPT. BENED." n="266" file="0266" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0266"/>
                  cundam verò ex .37. et .38. eiuſdem, </s>
                  <s xml:id="echoid-s3196" xml:space="preserve">propterea quod in .37. probat mediante maiori
                    <lb/>
                  diametro ipſius hyperbolis & defectionis, In .38. autem mediante minori diametro
                    <lb/>
                  ordinatè ad maiorem.</s>
                </p>
                <p>
                  <s xml:id="echoid-s3197" xml:space="preserve">Tertia autem paſſio, non niſi circulo conuenit; </s>
                  <s xml:id="echoid-s3198" xml:space="preserve">pace ipſius Cardani dictum ſit.</s>
                </p>
                <p>
                  <s xml:id="echoid-s3199" xml:space="preserve">Quapropter ſit circulus
                    <var>.q.o.b.</var>
                  cuius diameter ſit
                    <var>.q.b.</var>
                  contingentes vero ab extre
                    <lb/>
                  mitate diametri ſint
                    <var>.d.b.</var>
                  et
                    <var>.q.g.</var>
                  per punctum autem
                    <var>.o.</var>
                  quoduis, ipſius
                    <reg norm="circunferentiæ" type="context">circũferentiæ</reg>
                  ,
                    <lb/>
                  tranſeant
                    <var>.b.o.g.</var>
                  et
                    <var>.q.o.d</var>
                  . </s>
                  <s xml:id="echoid-s3200" xml:space="preserve">tunc dico productum
                    <var>.q.o.</var>
                  in
                    <var>.q.d.</var>
                  vel
                    <var>.b.o.</var>
                  in
                    <var>.b.g.</var>
                  ęquale eſ-
                    <lb/>
                  ſe quadrato
                    <var>.q.b.</var>
                  quod ita probo.</s>
                </p>
                <p>
                  <s xml:id="echoid-s3201" xml:space="preserve">Nam angulus
                    <var>.q.b.d.</var>
                  ſeu
                    <var>.b.q.g.</var>
                  rectus eſt ex .17. tertij Eucli. et
                    <var>.b.o.q.</var>
                  ſimiliter re-
                    <lb/>
                  ctus ex .30. ipſius lib. angulus verò
                    <var>.b.q.d.</var>
                  ſeu
                    <var>.q.b.g.</var>
                  communis eſt. </s>
                  <s xml:id="echoid-s3202" xml:space="preserve">quare
                    <var>.b.q.</var>
                  media
                    <lb/>
                  proportionalis erit inter dictas lineas
                    <var>.q.d.</var>
                  et
                    <var>.q.o.</var>
                  & inter
                    <var>.b.g.</var>
                  et
                    <var>.b.o</var>
                  . </s>
                  <s xml:id="echoid-s3203" xml:space="preserve">Vnde ſequetur
                    <lb/>
                  propoſitum ex .16.6. Eucli.</s>
                </p>
                <p>
                  <s xml:id="echoid-s3204" xml:space="preserve">Sed ſi circa diametrum
                    <var>.q.b.</var>
                  mente fingamus aliquam elipſim, quætangat ipſum
                    <lb/>
                    <figure xlink:label="fig-0266-01" xlink:href="fig-0266-01a" number="299">
                      <image file="0266-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0266-01"/>
                    </figure>
                  circulum duobus punctis me-
                    <lb/>
                  diantibus
                    <var>.q.</var>
                  et
                    <var>.b.</var>
                  (nam pluribus
                    <lb/>
                  eſſet impoſſibile, ex .27. quarti
                    <lb/>
                  Pergei) clarè patebit, quod
                    <reg norm="pum" type="context">pũ</reg>
                    <lb/>
                  ctus
                    <var>.o.</var>
                  erit extra
                    <reg norm="circunferentiam" type="context">circunferentiã</reg>
                    <lb/>
                  ipſius defectionis, </s>
                  <s xml:id="echoid-s3205" xml:space="preserve">quare ipſa cir
                    <lb/>
                  cunferentia ſecabit
                    <var>.b.g.</var>
                  vel
                    <var>.q.
                      <lb/>
                    d.</var>
                  in alio puncto, vnde ipſi non
                    <lb/>
                  occurret id quod probauimus
                    <lb/>
                  de circulo.</s>
                </p>
                <p>
                  <s xml:id="echoid-s3206" xml:space="preserve">Admiratus etiam ſum, ipſum
                    <lb/>
                  Cardanum dicere hyperbolem
                    <lb/>
                  ita vocari, eo quod angulus con
                    <lb/>
                  tentus ab axe ipſius figuræ, & à
                    <lb/>
                  latere trigoni in hyperbole ma-
                    <lb/>
                  ior ſit quam in parabole, quod
                    <lb/>
                  eriam confirmat paulo inferius,
                    <lb/>
                  nam hoc verum non eſt, imo fal
                    <lb/>
                  ſiſſimum. </s>
                  <s xml:id="echoid-s3207" xml:space="preserve">Talis enim ſectio ita
                    <lb/>
                  nominata fuit, hoc eſt hyperbo
                    <lb/>
                  les, ſimili ratione, qua elipſis ſeu
                    <lb/>
                  defectio etiam vocata fuit, nam
                    <lb/>
                  ſicut in ipſa defectione quadra-
                    <lb/>
                  tum ordinatę
                    <var>.l.m.</var>
                  minor eſt pro
                    <lb/>
                  ducto lineæ
                    <var>.e.m.</var>
                  in
                    <var>.e.t.</var>
                  per figu
                    <lb/>
                  ram ſimilcm producto
                    <var>.d.e.</var>
                  in
                    <var>.e.
                      <lb/>
                    t.</var>
                  quæ eandem obtineat
                    <reg norm="altitu- dinem" type="context">altitu-
                      <lb/>
                    dinẽ</reg>
                  ipſius
                    <var>.e.m.</var>
                  vt ipſe Pergeus
                    <lb/>
                  monſtrat in .13. primi lib. ita in
                    <lb/>
                  hyperbole
                    <reg norm="dictum" type="context">dictũ</reg>
                  quadratum ex
                    <lb/>
                  cedit quantitatem illius figuræ,
                    <lb/>
                  per ſimilem dictæ vt in .12.
                    <reg norm="ipſius" type="simple">ipſiꝰ</reg>
                    <lb/>
                  Pergei facilè videre eſt. </s>
                  <s xml:id="echoid-s3208" xml:space="preserve">ſed
                    <reg norm="prae­ ter" type="simple">prę­
                      <lb/>
                    ter</reg>
                  illas paſſiones, quas notat </s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>