Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
31 19
32 20
33 21
34 22
35 23
36 24
37 25
38 26
39 27
40 28
41 29
42 30
43 31
44 32
45 33
46 34
47 35
48 36
49 37
50 38
51 39
52 40
53 41
54 42
55 43
56 44
57 45
58 46
59 47
60 48
< >
page |< < (21) of 445 > >|
THEOREM. ARIT.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div71" type="math:theorem" level="3" n="32">
              <p>
                <s xml:id="echoid-s299" xml:space="preserve">
                  <pb o="21" rhead="THEOREM. ARIT." n="33" file="0033" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0033"/>
                retur .20. ſcilicet et .4. certè .24. perſingulas partes diuiſo, daretur vnum proue-
                  <lb/>
                niens ſex integra, & alterum vnum & quinta pars, quorum ſumma eſſet ſeptem in-
                  <lb/>
                tegra cum quinta parte, tum altera parte per alteram diuiſa, daretur vnum proue-
                  <lb/>
                niens quinque integrorum & alterum vnius quinti tantum, quorum ſumma eſſet
                  <lb/>
                quinque integra, & vna quinta pars, minor prima reliquorum duorum prouenien-
                  <lb/>
                tium per binarium.</s>
              </p>
              <p>
                <s xml:id="echoid-s300" xml:space="preserve">Cuius conſiderationis cauſa, propoſitus numerus linea
                  <var>.q.p.</var>
                ſignificetur, eius duę
                  <lb/>
                partes lineis
                  <var>.q.x.</var>
                et
                  <var>.x.p.</var>
                  <reg norm="tum" type="context">tũ</reg>
                  <var>.q.f.</var>
                ſit proueniens ex diuiſione totius
                  <var>.q.p.</var>
                per
                  <var>.x.p.</var>
                et
                  <var>.
                    <lb/>
                  q.i.</var>
                ſit proueniens ex diuiſione eiuſdem
                  <var>.q.p.</var>
                per
                  <var>.q.x.</var>
                adhæc
                  <var>.h.m.</var>
                ſit proueniens,
                  <lb/>
                ex diuiſione
                  <var>.q.x.</var>
                per
                  <var>x.p.</var>
                et
                  <var>.h.k.</var>
                proue-
                  <lb/>
                niensex diuiſione
                  <var>.p.x.</var>
                per
                  <var>.q.x.</var>
                patet igi-
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0033-01a" xlink:href="fig-0033-01"/>
                tur ex .22. theoremate huiuslibri proue-
                  <lb/>
                niés.h.m. minus eſſe proueniente
                  <var>.q.f.</var>
                per
                  <lb/>
                vnitaté, & proueniens
                  <var>.h.k.</var>
                minus proue-
                  <lb/>
                niente
                  <var>.q.i.</var>
                per alteram vnitatem. </s>
                <s xml:id="echoid-s301" xml:space="preserve">Itaque
                  <var>.
                    <lb/>
                  f.q.i.</var>
                maior erit
                  <var>.m.h.k.</var>
                per numerum binarium, quoderat propoſitum.</s>
              </p>
              <div xml:id="echoid-div71" type="float" level="4" n="1">
                <figure xlink:label="fig-0033-01" xlink:href="fig-0033-01a">
                  <image file="0033-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0033-01"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div73" type="math:theorem" level="3" n="33">
              <head xml:id="echoid-head49" xml:space="preserve">THEOREMA.
                <num value="33">XXXIII</num>
              .</head>
              <p>
                <s xml:id="echoid-s302" xml:space="preserve">
                  <emph style="sc">QVilibet</emph>
                numerus, medius eſt
                  <lb/>
                proportionalis inter numerum
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0033-02a" xlink:href="fig-0033-02"/>
                ſui quadrati & vnitatem.</s>
              </p>
              <div xml:id="echoid-div73" type="float" level="4" n="1">
                <figure xlink:label="fig-0033-02" xlink:href="fig-0033-02a">
                  <image file="0033-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0033-02"/>
                </figure>
              </div>
              <p>
                <s xml:id="echoid-s303" xml:space="preserve">Detur enim numerus propoſitus,
                  <lb/>
                qui linea
                  <var>.a.u.</var>
                ſignificetur, cuiusqua-
                  <lb/>
                dratum ſit
                  <var>.u.n.</var>
                vnitas linearis ſit
                  <var>.i.a.</var>
                  <lb/>
                et ſuperficialis
                  <var>.o.</var>
                patebit ex .18. ſexti
                  <lb/>
                aut 11. octaui proportionem
                  <var>.u.n.</var>
                ad
                  <var>.
                    <lb/>
                  o.</var>
                futuram duplam proportioni
                  <var>.u.a.</var>
                  <lb/>
                ad
                  <var>.i.a.</var>
                ſed
                  <var>.i.a.</var>
                e
                  <unsure/>
                t.o. eadem (ſpecie)
                  <lb/>
                res
                  <reg norm="sunt" type="context">sũt</reg>
                , tanta ſcilicet
                  <var>.a.i.</var>
                quanta
                  <var>.o.</var>
                vni
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0033-03a" xlink:href="fig-0033-03"/>
                tas eſt, Itaque proportio numeri
                  <var>.u.n.</var>
                  <lb/>
                ad
                  <var>.u.a.</var>
                æqualis erit proportioni
                  <var>.u.a.</var>
                  <lb/>
                ad
                  <var>.i.a</var>
                . </s>
                <s xml:id="echoid-s304" xml:space="preserve">Quare numerus
                  <var>.u.a.</var>
                inter nu-
                  <lb/>
                merum
                  <var>.u.n.</var>
                & vnitatem, medius erit
                  <lb/>
                proportionalis.</s>
              </p>
              <div xml:id="echoid-div74" type="float" level="4" n="2">
                <figure xlink:label="fig-0033-03" xlink:href="fig-0033-03a">
                  <image file="0033-03" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0033-03"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div76" type="math:theorem" level="3" n="34">
              <head xml:id="echoid-head50" xml:space="preserve">THEOREMA
                <num value="34">XXXIIII</num>
              .</head>
              <p>
                <s xml:id="echoid-s305" xml:space="preserve">
                  <emph style="sc">HOc</emph>
                ipſum quod diximus & alia ratione ſpeculari licebit.</s>
              </p>
              <p>
                <s xml:id="echoid-s306" xml:space="preserve">Propoſitus numerus, nunc etiam per
                  <var>.a.u.</var>
                ſignificetur, eius quadratum per
                  <var>.
                    <lb/>
                  u.n.</var>
                vnitas linearis per
                  <var>.a.i.</var>
                  <reg norm="productumque" type="simple">productumq́;</reg>
                  <var>.a.u.</var>
                in
                  <var>.a.i.</var>
                terminetur,
                  <reg norm="ſitque" type="simple">ſitq́;</reg>
                  <var>.n.i</var>
                . </s>
                <s xml:id="echoid-s307" xml:space="preserve">quare
                  <lb/>
                  <var>n.i.</var>
                conſtabit numero íuperficiali æquali numero lineari
                  <var>.a.u.</var>
                & ex prima fexti aut .
                  <lb/>
                18. vel .19. ſeptimi, eadem erit proportio
                  <var>.u.n.</var>
                ad
                  <var>.i.n.</var>
                quæ eſt
                  <var>.a.u.</var>
                ad
                  <var>.a.i.</var>
                ſed nu-
                  <lb/>
                merus
                  <var>.a.u.</var>
                cum numero
                  <var>.n.i.</var>
                idem ſpecie eſt. </s>
                <s xml:id="echoid-s308" xml:space="preserve">Itaque medius eſt proportiona-
                  <lb/>
                lis inter
                  <var>.u.n.</var>
                & vnitatem.</s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>