Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
31 19
32 20
33 21
34 22
35 23
36 24
37 25
38 26
39 27
40 28
41 29
42 30
43 31
44 32
45 33
46 34
47 35
48 36
49 37
50 38
51 39
52 40
53 41
54 42
55 43
56 44
57 45
58 46
59 47
60 48
< >
page |< < (22) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div76" type="math:theorem" level="3" n="34">
              <pb o="22" rhead="IO. BAPT. BENED." n="34" file="0034" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0034"/>
            </div>
            <div xml:id="echoid-div77" type="math:theorem" level="3" n="35">
              <head xml:id="echoid-head51" xml:space="preserve">THEOREMA
                <num value="35">XXXV</num>
              .</head>
              <p>
                <s xml:id="echoid-s309" xml:space="preserve">
                  <emph style="sc">QVivis</emph>
                numerus per alterum multiplicatus, & diuiſus, medius eſt propor-
                  <lb/>
                tionalis inter productum multiplicationis, & proueniens diaiſionis.</s>
              </p>
              <p>
                <s xml:id="echoid-s310" xml:space="preserve">Exempli gratia, ſi .20.
                  <reg norm="multiplicentur" type="context">multiplicẽtur</reg>
                per quinque & inde per quinque diuidantur
                  <lb/>
                productum erit .100. proueniens .4. inter quos numeros .20. medius eſt propor-
                  <lb/>
                tionalis.</s>
              </p>
              <p>
                <s xml:id="echoid-s311" xml:space="preserve">Hoc vt ſpeculemur, proponatur numerus multiplicandus & diuidendus, qui ſi-
                  <lb/>
                gnificetur linea
                  <var>.u.e.</var>
                multiplicans autem & diuidens linea
                  <var>.a.u.</var>
                multiplicationis
                  <lb/>
                productum ſit
                  <var>.e.a.</var>
                proueniens ex diuiſione ſit
                  <var>.o.e</var>
                . </s>
                <s xml:id="echoid-s312" xml:space="preserve">Nunc proueniens
                  <var>.e.o.</var>
                per
                  <reg norm="nu- merum" type="context">nu-
                    <lb/>
                  merũ</reg>
                  <var>.a.u.</var>
                diuidentem multiplicetur, cuius multiplicationis productum ſit
                  <var>.e.i.</var>
                  <lb/>
                quare, eadem erit proportio numeri
                  <var>.a.e.</var>
                  <lb/>
                ad numerum
                  <var>.e.i.</var>
                quæ eſt numeri
                  <var>.u.e.</var>
                ad
                  <lb/>
                  <anchor type="figure" xlink:label="fig-0034-01a" xlink:href="fig-0034-01"/>
                numerum
                  <var>.e.o.</var>
                ex prima ſextiaut .18. vel
                  <lb/>
                19. ſeptimi. </s>
                <s xml:id="echoid-s313" xml:space="preserve">Sed cum numerus
                  <var>.u.e.</var>
                ex
                  <ref id="ref-0010">.11. theoremate præſentis libri</ref>
                , numero
                  <var>.e.
                    <lb/>
                  i.</var>
                æqualis ſit. </s>
                <s xml:id="echoid-s314" xml:space="preserve">verum eſſe, quod propoſi-
                  <lb/>
                tum fuit conſequetur.</s>
              </p>
              <div xml:id="echoid-div77" type="float" level="4" n="1">
                <figure xlink:label="fig-0034-01" xlink:href="fig-0034-01a">
                  <image file="0034-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0034-01"/>
                </figure>
              </div>
            </div>
            <div xml:id="echoid-div79" type="math:theorem" level="3" n="36">
              <head xml:id="echoid-head52" xml:space="preserve">THEOREMA
                <num value="36">XXXVI</num>
              .</head>
              <p>
                <s xml:id="echoid-s315" xml:space="preserve">CVR ij, qui propoſitum numerum ita multiplicare & diuidere cupiunt, vt pro
                  <lb/>
                ductum multiplicationis, tam ſit multiplex prouenienti ex diuiſione, quam
                  <lb/>
                quæritur, rectè ſumant aliquem numerum pro multiplicante & diuidente, qui ſit ra
                  <lb/>
                dix quadrata denominantis quęſitę multiplicitatis.</s>
              </p>
              <p>
                <s xml:id="echoid-s316" xml:space="preserve">Exempli gratia, proponuntur .20. multiplicanda atque diuidenda, ita vt pro-
                  <lb/>
                ductum multiplicationis nonuplum ſit prouenienti ex diuiſione, nempè, vt pro-
                  <lb/>
                ueniens, nona pars ſit eiuſmodi producti, </s>
                <s xml:id="echoid-s317" xml:space="preserve">quare quadratam radicem ipſorum no-
                  <lb/>
                uem, ideſt denominantis ſumunt, tria ſcilicet, multiplicant igitur & diuidunt
                  <lb/>
                data .20. ex quo productum erit .60. proueniens autem .6. cum duabus tertijs. </s>
                <s xml:id="echoid-s318" xml:space="preserve">&
                  <lb/>
                propoſitum ſequitur.</s>
              </p>
              <p>
                <s xml:id="echoid-s319" xml:space="preserve">Cuius ſpeculationis cauſa, ſignificetur numerus propoſitus linea
                  <var>.u.e.</var>
                multipli-
                  <lb/>
                cans autem & diuidens linea
                  <var>.u.a.</var>
                productum ſit
                  <var>.e.a.</var>
                proueniens
                  <var>.e.o.</var>
                quadratum
                  <lb/>
                verò
                  <var>.a.u.</var>
                ſit
                  <var>.x.a.</var>
                erit igitur proportio
                  <var>.a.e.</var>
                ad
                  <var>.e.o.</var>
                dupla proportioni
                  <var>.a.e.</var>
                ad nume
                  <lb/>
                rum
                  <var>.u.e.</var>
                ex præcedenti theoremate: </s>
                <s xml:id="echoid-s320" xml:space="preserve">Adhæc, cogitemus in linea
                  <var>.u.a.</var>
                vnitatem
                  <var>.
                    <lb/>
                  u.i.</var>
                  <reg norm="terminenturque" type="simple">terminenturq́;</reg>
                duo producta
                  <var>.e.i.</var>
                et
                  <var>.x.i.</var>
                </s>
                <s xml:id="echoid-s321" xml:space="preserve">quare eadem erit proportio
                  <var>.a.e.</var>
                ad
                  <var>.e.i.</var>
                  <lb/>
                quæ eſt
                  <var>.a.e.</var>
                ad
                  <var>.u.e.</var>
                numerus enim
                  <var>.e.i.</var>
                (quamuis ſuperficialis) idem eſt cum nume-
                  <lb/>
                ro lineari
                  <var>.u.e.</var>
                ſed
                  <var>.a.e.</var>
                ad
                  <var>.e.i.</var>
                ſic ſe habet ſicut
                  <var>.a.u.</var>
                ad
                  <var>.u.i.</var>
                ex prima ſexti aut .18.
                  <lb/>
                vel .19. ſeptimi, (quod ipſum dico de
                  <var>.a.x.</var>
                ad
                  <var>.x.i.</var>
                ) </s>
                <s xml:id="echoid-s322" xml:space="preserve">quare proportio
                  <var>.a.x.</var>
                ad
                  <var>.x.i.</var>
                hoc
                  <lb/>
                eſt
                  <var>.x.u.</var>
                ęqualis erit
                  <reg norm="proportioni" type="simple">ꝓportioni</reg>
                  <var>.a.e.</var>
                ad
                  <var>.u.e.</var>
                at trigeſimotertio & trigeſimoquarto theo
                  <lb/>
                remate probatum eſt proportionem numeri
                  <var>.a.x.</var>
                ad vnitatem, duplam eſſe propor-
                  <lb/>
                tioni eiuſdem numeri
                  <var>.a.x.</var>
                ad
                  <var>.u.x.</var>
                ſequitur
                  <lb/>
                igitur cum dimidia ſint æqualia, tota etiam
                  <lb/>
                æqualia eſſe: </s>
                <s xml:id="echoid-s323" xml:space="preserve">hoc eſt proportionem numeri
                  <var>.
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0034-02a" xlink:href="fig-0034-02"/>
                  a.e.</var>
                ad numerum
                  <var>.e.o.</var>
                æqualem eſſe propor
                  <lb/>
                tioni numeri
                  <var>.a.x.</var>
                ad vnitatem. </s>
                <s xml:id="echoid-s324" xml:space="preserve">Itaque rectè
                  <lb/>
                ſumitur numerus
                  <var>.a.u.</var>
                eiuſmodi vt
                  <reg norm="quadratum" type="context">quadratũ</reg>
                </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>