Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
341 329
342 330
343 331
344 332
345 333
346 334
347 335
348 336
349 337
350 338
351 339
352 340
353 341
354 342
355 343
356 344
357 345
358 346
359 347
360 348
361 349
362 350
363 351
364 352
365 353
366 354
367 355
368 356
369 357
370 358
< >
page |< < (329) of 445 > >|
EPISTOL AE.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div630" type="section" level="3" n="26">
              <div xml:id="echoid-div634" type="letter" level="4" n="2">
                <p>
                  <s xml:id="echoid-s3992" xml:space="preserve">
                    <pb o="329" rhead="EPISTOL AE." n="341" file="0341" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0341"/>
                  rem, quæ ita reperientur, efficiemus primo anguium coni, qui ſit
                    <var>.i.A.b.</var>
                  quem diui-
                    <lb/>
                  demus per æqualia mediante
                    <var>.A.q.</var>
                  conſtituendo
                    <var>.A.i.</var>
                  huius anguli æqualem
                    <var>.A.i.</var>
                  ſu-
                    <lb/>
                  perficiei conicæ et
                    <var>.A.q.</var>
                  diuidentem, æqualem parti
                    <var>.A.q.</var>
                  axis coni, ducendo poſtea
                    <lb/>
                  ab
                    <var>.i.</var>
                  per
                    <var>.q.</var>
                  lineam vnam quouſque concurrat
                    <var>.A.b.</var>
                  in puncto
                    <var>.b.</var>
                  habebimus
                    <var>.i.b.</var>
                  pro
                    <lb/>
                  maiori axi ipſi ellipſis, quod per ſe clarum eſt, cuius medietas ſit
                    <var>.i.c.</var>
                  ſed
                    <var>.i.q.</var>
                  ipſius
                    <var>.i.
                      <lb/>
                    b.</var>
                  æqualis eſt ipſi
                    <var>.q.i.</var>
                  ipſius coni, ex quarta primi Eucli. et
                    <var>.q.b.</var>
                  ipſius
                    <var>.i.b.</var>
                  æqualis alte
                    <lb/>
                  ri parti inuiſibili. </s>
                  <s xml:id="echoid-s3993" xml:space="preserve">Reliquum eſt, vt reperiamus minorem axem, quem vocabimus
                    <var>.
                      <lb/>
                    f.r.</var>
                  ducatur ergo primum
                    <var>.q.a.u.n.</var>
                  ad rectos cum
                    <var>.i.b.</var>
                    <reg norm="æqualisque" type="simple">æqualisq́;</reg>
                  ei quæ eſt coni, & diui
                    <lb/>
                  ſa ſimiliter in
                    <var>.a.</var>
                  quæ
                    <var>.u.n.</var>
                  ipſius coni nobis cognita eſt ex lateribus
                    <var>.A.u.</var>
                  et
                    <var>.A.n.</var>
                  & ex
                    <lb/>
                  angulo coni, et
                    <var>.a.q.</var>
                  æqualis eſt
                    <var>.e.p.</var>
                  ex .34. primi. </s>
                  <s xml:id="echoid-s3994" xml:space="preserve">Nunc certi erimus ex .21. primi
                    <lb/>
                  Pergei, quod eadem proportio erit quadrati
                    <var>.u.q.</var>
                  ad quadratum ipſius
                    <var>.f.c.</var>
                  quæ pro-
                    <lb/>
                  ducti ipſius
                    <var>.i.q.</var>
                  in
                    <var>.q.b.</var>
                  ad productum ipſius
                    <var>.i.c.</var>
                  in
                    <var>.c.b.</var>
                  & cum cognita nobis ſint
                    <lb/>
                  hæc tria producta hoc eſt
                    <var>.i.q.</var>
                  in
                    <var>.q.b.</var>
                  et
                    <var>.i.c.</var>
                  in
                    <var>.c.b.</var>
                  et
                    <var>.u.q.</var>
                  in ſeipſa, cognoſcemus
                    <reg norm="etiam" type="context">etiã</reg>
                    <lb/>
                  quartum ipſius
                    <var>.f.c.</var>
                  & fic
                    <var>.f.c.</var>
                    <reg norm="eiuſque" type="simple">eiuſq́;</reg>
                  duplum
                    <var>.f.r.</var>
                  cogniti nobis itaque cum ſint hi duo
                    <lb/>
                  axes
                    <var>.i.b.</var>
                  et
                    <var>.f.r.</var>
                  formabimus ellipſim. </s>
                  <s xml:id="echoid-s3995" xml:space="preserve">Deinde producemus axim
                    <var>.b.i.</var>
                  à part
                    <var>e.i.</var>
                  quo-
                    <lb/>
                  uſque
                    <var>.i.o.</var>
                  æqualis ſit ei quæ extra conum eſt, dein-
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0341-01a" xlink:href="fig-0341-01"/>
                  de ducemus
                    <var>.o.a.</var>
                  quæ circunferentiam ellipticam
                    <lb/>
                  ſecabit in puncto
                    <var>.K.</var>
                  vnde habebimus quantita-
                    <lb/>
                  tem ipſius
                    <var>.o.K.</var>
                  et
                    <var>.K.i.</var>
                  rectam. </s>
                  <s xml:id="echoid-s3996" xml:space="preserve">inde mediante cir-
                    <lb/>
                  cino ſi acceperimus rectam diſtantiam ab
                    <var>.i.</var>
                  ad
                    <var>.K.</var>
                    <lb/>
                  in ellipſi, </s>
                  <s xml:id="echoid-s3997" xml:space="preserve">deinde firmando pedem circini in pun-
                    <lb/>
                  cto
                    <var>.i.</var>
                  in ſuperficie conica, & cum alio ſignando
                    <lb/>
                  lineam vnam curuam ad partem
                    <var>.K.</var>
                  in ſuperficie
                    <lb/>
                  conica, ſumendo poſtea interuallum
                    <var>.o.K.</var>
                  extra el
                    <lb/>
                  lipſim, </s>
                  <s xml:id="echoid-s3998" xml:space="preserve">deinde firmando vnum pedem circini in
                    <lb/>
                  extre mitate gnomonis, cum alio poſtea ſignan-
                    <lb/>
                  do aliam lineam curuam in ſuperficie ipſius coni,
                    <lb/>
                  quæ primam ſe cet in puncto
                    <var>.K.</var>
                  hoc erit punctum
                    <lb/>
                  quæſitum horę propoſitæ in ſuperficie conica
                    <lb/>
                  propoſita.</s>
                </p>
                <div xml:id="echoid-div635" type="float" level="5" n="2">
                  <figure xlink:label="fig-0341-01" xlink:href="fig-0341-01a">
                    <image file="0341-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0341-01"/>
                  </figure>
                </div>
                <p>
                  <s xml:id="echoid-s3999" xml:space="preserve">Sed ſi talis ſectio fuerit parabole, vel hyperbo
                    <lb/>
                  le, tunc mediante ſuo diametro
                    <var>.i.q.</var>
                  cum baſi
                    <var>.u.
                      <lb/>
                    q.n.</var>
                  cognita, deſignabimus ipſam ſectionem
                    <var>.u.i.</var>
                  n
                    <lb/>
                  ope mei
                    <reg norm="inſtrumenti" type="context">inſtrumẽti</reg>
                  in calce meę gnomonicæ de
                    <lb/>
                  ſcripti, </s>
                  <s xml:id="echoid-s4000" xml:space="preserve">deinde diuiſa
                    <var>.u.q.</var>
                  in
                    <var>.a.</var>
                    <reg norm="pro" type="simple">ꝓ</reg>
                    <reg norm="ductaque" type="simple">ductaq́;</reg>
                    <var>q.i.</var>
                    <reg norm="vſque" type="simple">vſq;</reg>
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0341-02a" xlink:href="fig-0341-02"/>
                  ad
                    <var>.o.</var>
                    <reg norm="ductaque" type="simple">ductaq́;</reg>
                    <var>.o.a.</var>
                  habebimus punctum
                    <var>.K</var>
                  . </s>
                  <s xml:id="echoid-s4001" xml:space="preserve">Reli-
                    <lb/>
                  qua facienda ſunt, vt dictum eſt de ellipſi.</s>
                </p>
                <div xml:id="echoid-div636" type="float" level="5" n="3">
                  <figure xlink:label="fig-0341-02" xlink:href="fig-0341-02a">
                    <image file="0341-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0341-02"/>
                  </figure>
                </div>
                <p>
                  <s xml:id="echoid-s4002" xml:space="preserve">Inuenta modo cum fuerint duo puncta eiuſ-
                    <lb/>
                  dem horæ propoſitę, ducemus ab vno ad a-
                    <lb/>
                  liud, lineam horariam mediante circino trium
                    <lb/>
                  crurum, quem tibi ſcripſi nudius tertius pro cyl
                    <lb/>
                  lindro, quæ
                    <reg norm="quidem" type="context">quidẽ</reg>
                  linea crit portio gyri ellipſis,
                    <lb/>
                  ſeu hyperbolę, vel parabolę, vt à te ipſo cogi-
                    <lb/>
                  tare potes.</s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>