Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
341 329
342 330
343 331
344 332
345 333
346 334
347 335
348 336
349 337
350 338
351 339
352 340
353 341
354 342
355 343
356 344
357 345
358 346
359 347
360 348
361 349
362 350
363 351
364 352
365 353
366 354
367 355
368 356
369 357
370 358
< >
page |< < (332) of 445 > >|
IO. BAPT. BENED.
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div642" type="section" level="3" n="28">
              <div xml:id="echoid-div642" type="letter" level="4" n="1">
                <p>
                  <s xml:id="echoid-s4018" xml:space="preserve">
                    <pb o="332" rhead="IO. BAPT. BENED." n="344" file="0344" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0344"/>
                  lineas
                    <var>.b.q.</var>
                  et
                    <var>.b.n.</var>
                  ſimul ſumptas longiores eſſe omnibus alijs lineis exeuntibus ab ip
                    <lb/>
                  ſis punctis
                    <var>.q.n.</var>
                  quæ in aliquo puncto dictæ circunferentiæ ſimul concurrant.</s>
                </p>
                <div xml:id="echoid-div642" type="float" level="5" n="1">
                  <figure xlink:label="fig-0343-01" xlink:href="fig-0343-01a">
                    <image file="0343-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0343-01"/>
                  </figure>
                </div>
                <p>
                  <s xml:id="echoid-s4019" xml:space="preserve">Sint igitur aliæ duæ
                    <var>.q.o.</var>
                  et
                    <var>.n.o.</var>
                  quas probare volo ſimul ſumptas, eſſe minores dua
                    <lb/>
                  bus ſimul ſumptis
                    <var>.q.b.</var>
                  et
                    <var>.n.b</var>
                  . </s>
                  <s xml:id="echoid-s4020" xml:space="preserve">Nam ex .20. tertij Eucli. cognoſcimus angulos
                    <var>.q.b.n.</var>
                    <lb/>
                  et
                    <var>.q.o.n.</var>
                  inuicem æquales eſſe, & ſimiliter angulos
                    <var>.b.n.o.</var>
                  et
                    <var>.b.q.o</var>
                  . </s>
                  <s xml:id="echoid-s4021" xml:space="preserve">deinde ex .15. pri
                    <lb/>
                  mi eiuſdem habemus angulos contra ſe poſitos,
                    <lb/>
                  circa
                    <var>.a.</var>
                  eſſe etiam inuicem ęquales. </s>
                  <s xml:id="echoid-s4022" xml:space="preserve">Vnde ex .4
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0344-01a" xlink:href="fig-0344-01"/>
                  ſexti, habebimus proportionem
                    <var>.a.b.</var>
                  ad .a
                    <lb/>
                  o. eandem eſſe, quæ
                    <var>.a.n.</var>
                  ad
                    <var>.a.q.</var>
                  & ſic .b
                    <lb/>
                  n. ad
                    <var>.o.q</var>
                  . </s>
                  <s xml:id="echoid-s4023" xml:space="preserve">Quare ita erit
                    <var>.a.b.n.</var>
                  ad
                    <var>.a.o.q.</var>
                  vt
                    <var>.a.n</var>
                    <lb/>
                  ad
                    <var>.a.q.</var>
                  ſed cum
                    <var>.a.n.</var>
                  maior ſit
                    <var>.q.a.</var>
                  ex .18. primi,
                    <lb/>
                  eo quod angulus
                    <var>.b.q.n.</var>
                  (qui æqualis eſt angulo
                    <var>.
                      <lb/>
                    b.n.q.</var>
                  ex .5. eiuſdem) maior eſt angulo
                    <var>.a.n.q.</var>
                    <lb/>
                  qui pars eſt ipſius
                    <var>.b.n.q.</var>
                  ergo latera ſimul ſum-
                    <lb/>
                  pta
                    <var>.a.b.n.</var>
                  maiora erunt lateribus
                    <var>.a.o.q.</var>
                  ſed ex
                    <num value="20">.
                      <lb/>
                    20.</num>
                  primi
                    <var>.a.b.n.</var>
                    <reg norm="etiam" type="context">etiã</reg>
                  maior erit
                    <var>.a.n.</var>
                  vnde ex .25.
                    <lb/>
                  quinti
                    <var>.q.a.b.n.</var>
                  maior erit
                    <var>.n.a.o.q</var>
                  . </s>
                  <s xml:id="echoid-s4024" xml:space="preserve">quare ſequi-
                    <lb/>
                  tur verum eſſe propofitum.</s>
                </p>
                <div xml:id="echoid-div643" type="float" level="5" n="2">
                  <figure xlink:label="fig-0344-01" xlink:href="fig-0344-01a">
                    <image file="0344-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0344-01"/>
                  </figure>
                </div>
                <p>
                  <s xml:id="echoid-s4025" xml:space="preserve">Sed ſi oculus eſſet in
                    <var>.u.</var>
                  quemadmodum in ſubſcripta hic
                    <reg norm="ſecunda" type="context">ſecũda</reg>
                  figura videre eſt,
                    <lb/>
                  res autem viſibilis in
                    <var>.n.</var>
                  ambo extra dictum circulum, eſto etiam primum
                    <var>.b.u.</var>
                  æqua-
                    <lb/>
                  lis
                    <var>.b.n.</var>
                  probabo ſimiliter
                    <var>.u.b.n.</var>
                  maiores eſſe
                    <var>.u.o.n</var>
                  . </s>
                  <s xml:id="echoid-s4026" xml:space="preserve">Nam angulus
                    <var>.o.</var>
                  maior eſt angu-
                    <lb/>
                  lo
                    <var>.b.</var>
                  eo quod ſi circulum
                    <var>.u.b.n.</var>
                  cogitemus circunſcribere triangulum
                    <var>.u.b.n.</var>
                  ducen-
                    <lb/>
                  do vſque ad ſuam circunferentiam
                    <var>.o.n.</var>
                  in puncto
                    <var>.s.</var>
                  deinde ducendo
                    <var>.u.s.</var>
                  habebimus
                    <lb/>
                  ex .20. tertij angulum
                    <var>.u.s.n.</var>
                    <reg norm="æqualem" type="context">æqualẽ</reg>
                  angulo
                    <var>.u.b.n.</var>
                  ſed
                    <reg norm="cum" type="context">cũ</reg>
                  angulus
                    <var>.u.o.n.</var>
                  exterior trian
                    <lb/>
                  guli
                    <var>.u.o.s.</var>
                  exiſtat, ipſe maior erit angulo
                    <var>.s.</var>
                  ex .16. primi. </s>
                  <s xml:id="echoid-s4027" xml:space="preserve">duco poſtea
                    <var>.o.q.</var>
                  parallelam
                    <lb/>
                  ad
                    <var>.u.s.</var>
                  quæ ſecabit
                    <var>.a.u.</var>
                  in puncto
                    <var>.q.</var>
                  & habebimus angulum
                    <var>.a.o.q.</var>
                  ęqualem angulo
                    <var>.
                      <lb/>
                    n.s.u.</var>
                  ex .29. eiuſdem, hoc eſt angulo
                    <var>.n.b.u.</var>
                  fed ex ſu-
                    <lb/>
                    <anchor type="figure" xlink:label="fig-0344-02a" xlink:href="fig-0344-02"/>
                  pradictis rationibus, lineæ
                    <var>.q.b.n.</var>
                  ſimul ſumptæ maio-
                    <lb/>
                  rem efficient longitudinem, quam
                    <var>.q.o.n</var>
                  . </s>
                  <s xml:id="echoid-s4028" xml:space="preserve">Nunc cum
                    <lb/>
                  ipſi
                    <var>.q.b.</var>
                  addita fuerit
                    <var>.u.q.</var>
                  & vice
                    <var>.q.o.</var>
                  ſumpta fuerit ali-
                    <lb/>
                  qua linea minor ipſa
                    <var>.u.q.o.</var>
                  eo amplius
                    <var>.u.q.b.n.</var>
                  maior
                    <lb/>
                  erit, quod quidem hoc modo faciendum. </s>
                  <s xml:id="echoid-s4029" xml:space="preserve">Acci-
                    <lb/>
                  piatur
                    <var>.o.u.</var>
                  vt comes
                    <var>.o.n.</var>
                  quæ minor eſt ambabus
                    <var>.o.
                      <lb/>
                    q.</var>
                  et
                    <var>.q.u.</var>
                  ex .20. primi, ita enim habebimus
                    <reg norm="propoſitum" type="context">propoſitũ</reg>
                  .
                    <lb/>
                  </s>
                  <s xml:id="echoid-s4030" xml:space="preserve">ſed breuiori modo hoc ipſum videbis ex pręcedenti,
                    <lb/>
                  & ex .21. primi Euclid. </s>
                  <s xml:id="echoid-s4031" xml:space="preserve">Nam ex præcedenti
                    <var>.u.b.n.</var>
                  lon-
                    <lb/>
                  gior eſt ipſa
                    <var>.u.s.n.</var>
                  ex .21. autem primi
                    <var>.u.s.n.</var>
                  longior eſt
                    <lb/>
                  ipſa
                    <var>.u.o.n.</var>
                  ergo verum eſt propoſitum.</s>
                </p>
                <div xml:id="echoid-div644" type="float" level="5" n="3">
                  <figure xlink:label="fig-0344-02" xlink:href="fig-0344-02a">
                    <image file="0344-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0344-02"/>
                  </figure>
                </div>
                <figure position="here">
                  <image file="0344-03" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0344-03"/>
                </figure>
                <p>
                  <s xml:id="echoid-s4032" xml:space="preserve">Si verò radius incidentiæ
                    <reg norm="non" type="context">nõ</reg>
                  fuerit æqualis radio
                    <lb/>
                  reflexionis, ſit vt in hac ſubſcripta tertia figura vide
                    <lb/>
                  re eſt
                    <var>.u.b.p</var>
                  .</s>
                </p>
                <p>
                  <s xml:id="echoid-s4033" xml:space="preserve">Cum autem probauerim longitudinem
                    <var>.u.b.n.</var>
                  ma
                    <lb/>
                  iorem eſſe longitudine
                    <var>.u.o.n.</var>
                  coniungatur
                    <var>.n.p.</var>
                  cum
                    <lb/>
                    <var>u.b.n</var>
                  . </s>
                  <s xml:id="echoid-s4034" xml:space="preserve">deinde. ab
                    <var>.o.</var>
                  ad
                    <var>.p.</var>
                  ducatur
                    <var>.o.p.</var>
                  quæ minor
                    <lb/>
                  erit longitudine
                    <var>.o.n.p.</var>
                  ex .20. primi, & illicò
                    <lb/>
                  manifeſtabitur verum eſſe propoſitum, etiam hoc
                    <lb/>
                  tertio modo.</s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>