Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
371 359
372 360
373 361
374 362
375 363
376 364
377 365
378 366
379 367
380 368
381 369
382 370
383 371
384 372
385 373
386 374
387 375
388 376
389 377
390 378
391 379
392 380
393 381
394 382
395 383
396 384
397 385
398 386
399 387
400 388
< >
page |< < (333) of 445 > >|
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div642" type="section" level="3" n="28">
              <div xml:id="echoid-div642" type="letter" level="4" n="1">
                <pb o="333" rhead="EPISTOL AE." n="345" file="0345" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0345"/>
                <p>
                  <s xml:id="echoid-s4035" xml:space="preserve">Si
                    <reg norm="autem" type="context">autẽ</reg>
                  res viſibilis
                    <reg norm="oculusque" type="simple">oculusq́;</reg>
                  ambo fuerint intra circulum,
                    <reg norm="tunc" type="context">tũc</reg>
                  poſſibile eſſet quod
                    <lb/>
                    <reg norm="longitudo" type="context">lõgitudo</reg>
                    <var>.u.b.n.</var>
                  modo maior, modo minor, modo verò æqualis eſſet ipſa
                    <var>.u.o.n.</var>
                    <reg norm="nunc" type="context">nũc</reg>
                  .
                    <lb/>
                  </s>
                  <s xml:id="echoid-s4036" xml:space="preserve">Quod etiam affirmo de
                    <var>.u.b.p.</var>
                  ſimiliter etiam eueniet ſi vnus terminorum
                    <var>.u.</var>
                  vel
                    <var>.n.</var>
                    <lb/>
                  fuerit intra circunferentiam, reliquus verò extra ipſam.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4037" xml:space="preserve">Conſideremus nunc hic inſraſcriptam .4. figuram vbi
                    <var>.d.b.p.</var>
                  ſit circunferentia oxy
                    <lb/>
                  gonia ſeu elliptica (quod idem eſt) cuius maior axis ſit
                    <var>.d.p.</var>
                  in quo, duo termini
                    <var>.u.n.</var>
                    <lb/>
                  ſint centra eius generationis: </s>
                  <s xml:id="echoid-s4038" xml:space="preserve">b.x. verò ſit minor axis. </s>
                  <s xml:id="echoid-s4039" xml:space="preserve">Imaginemur etiam circulum
                    <var>.
                      <lb/>
                    b.o.x.</var>
                  cuius ſemidiameter ſit
                    <var>.c.b.</var>
                  non maior medietate minoris axis, ne circunferen-
                    <lb/>
                  tia huiuſmodi circuli ſecet circunferentiam oxygoniam. </s>
                  <s xml:id="echoid-s4040" xml:space="preserve">Cogitemus etiam circu-
                    <lb/>
                  lum
                    <var>.b.e.</var>
                  cuius ſemidiameter, minor non ſit minori axe
                    <var>.b.x.</var>
                  ipſius oxygoniæ, ne ſe
                    <lb/>
                  inuicem ſecent huiuſmodi circunferentiæ, ſint etiam ambo eorum centra in linea
                    <var>.b.
                      <lb/>
                    x.</var>
                  minoris axis, & punctum
                    <var>.b.</var>
                  ſit commune vnicuique earum periphæriarum, vnde
                    <lb/>
                  minor circulus, totus intra, maior autem, totus extra ipſam
                    <reg norm="figuram" type="context">figurã</reg>
                  oxygoniam erit.
                    <lb/>
                  </s>
                  <s xml:id="echoid-s4041" xml:space="preserve">Nunc ad partem
                    <var>.o.r.e.</var>
                  vbi non communicant inuicem ipſæ circunferentiæ ducan-
                    <lb/>
                  tur
                    <var>.n.o.r.e</var>
                  :
                    <var>u.o</var>
                  :
                    <var>u.r</var>
                  : et
                    <var>.u.e.</var>
                  & per
                    <var>.b.</var>
                  et
                    <var>.r.</var>
                  cogitetur tranſire alium circulum, cuius cen-
                    <lb/>
                  trum in axe
                    <var>.b.x.</var>
                  ſit
                    <var>.t.</var>
                    <reg norm="omnesque" type="simple">omnesq́;</reg>
                  iſti circuli imaginentur trium diuerſorum ſphærico-
                    <lb/>
                  rum ſpeculorum, vnde pro genera
                    <lb/>
                  tione
                    <reg norm="ipſius" type="simple">ipſiꝰ</reg>
                  oxygonię, ſeu ex .52. ter
                    <lb/>
                  tij Pergei, habebis longitudinem
                    <var>.
                      <lb/>
                      <figure xlink:label="fig-0345-01" xlink:href="fig-0345-01a" number="371">
                        <image file="0345-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0345-01"/>
                      </figure>
                    u.r.n.</var>
                  ęqualem eſſe longitudini
                    <var>.u.b.
                      <lb/>
                    n.</var>
                  & ei, quæ eſt
                    <var>.u.o.n.</var>
                  (vt minor ip
                    <lb/>
                  ſa
                    <var>.u.r.n.</var>
                  ex .21. primi Euclidis) mi-
                    <lb/>
                  nor ipſa
                    <var>.u.b.n.</var>
                  & longitudinem
                    <var>.u.
                      <lb/>
                    e.n.</var>
                  (vt maior ipſa
                    <var>.u.r.n.</var>
                  ex eadem
                    <num value="21">.
                      <lb/>
                    21.</num>
                  primi Eucli.) maior ipſa
                    <var>.u.b.n</var>
                  .
                    <lb/>
                  </s>
                  <s xml:id="echoid-s4042" xml:space="preserve">Sed ſi quis vellet hoc demonſtrare
                    <lb/>
                  ope circuli,
                    <reg norm="vnius" type="simple">vniꝰ</reg>
                    <reg norm="tantummodo" type="context context">tãtũmodo</reg>
                  ſpeculi,
                    <lb/>
                    <reg norm="multiplicando" type="context">multiplicãdo</reg>
                  ipſas oxygonias
                    <reg norm="quem- admodum" type="wordlist">quẽ-
                      <lb/>
                    admodum</reg>
                  de ipſis circulis fecimus, obtineret ſimiliter propoſitum.</s>
                </p>
              </div>
              <div xml:id="echoid-div647" type="letter" level="4" n="2">
                <head xml:id="echoid-head497" style="it" xml:space="preserve">Solutio dubitationis.</head>
                <head xml:id="echoid-head498" xml:space="preserve">AD EVNDEM.</head>
                <p>
                  <s xml:id="echoid-s4043" xml:space="preserve">RAtionalis eſt dubitatio tua,
                    <lb/>
                    <figure xlink:label="fig-0345-02" xlink:href="fig-0345-02a" number="372">
                      <image file="0345-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0345-02"/>
                    </figure>
                  vtrum (
                    <reg norm="cum" type="context">cũ</reg>
                  circulus minor hoc
                    <lb/>
                  eſt
                    <var>.b.o.</var>
                  habeat ſuum centrum in mi
                    <lb/>
                  nori axe inter centrum oxygoniæ,
                    <lb/>
                  et .b: exiſtente
                    <var>.b.</var>
                  extremo axis mi-
                    <lb/>
                  noris,
                    <reg norm="communeque" type="simple">communeq́;</reg>
                  ambobus circun-
                    <lb/>
                  ferentijs circuli ſcilicet & oxigonię)
                    <lb/>
                  dictus circulus minor, plura puncta
                    <lb/>
                  communia habeat cum ipſis circun-
                    <lb/>
                  ferentijs.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4044" xml:space="preserve">Cui dubitationi
                    <reg norm="reſpondeo" type="context">reſpõdeo</reg>
                  quod
                    <lb/>
                  quotieſcunque centrum alicuius cir
                    <lb/>
                  culi fuerit idem cum
                    <var>.c.</var>
                  centro oxy-
                    <lb/>
                  goniæ, vel inter
                    <var>.c.</var>
                  et
                    <var>.b.</var>
                  in interual-
                    <lb/>
                  lo ſcilicet minoris axis, exiſtente
                    <var>.b.</var>
                    <lb/>
                  ſua extremitate communi ambabus </s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>