Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
371 359
372 360
373 361
374 362
375 363
376 364
377 365
378 366
379 367
380 368
381 369
382 370
383 371
384 372
385 373
386 374
387 375
388 376
389 377
390 378
391 379
392 380
393 381
394 382
395 383
396 384
397 385
398 386
399 387
400 388
< >
page |< < (334) of 445 > >|
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div642" type="section" level="3" n="28">
              <div xml:id="echoid-div647" type="letter" level="4" n="2">
                <p>
                  <s xml:id="echoid-s4044" xml:space="preserve">
                    <pb o="334" rhead="IO. BABPT. BENED." n="346" file="0346" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0346"/>
                  circunferentijs, ipſas circunferentias inuicem contiguas eſſe oportebit in puncto
                    <var>.b.</var>
                    <lb/>
                  tantummodo.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4045" xml:space="preserve">Eſto primum quod centrum
                    <var>.c.</var>
                  commune exiſtat, vt dictum eſt. </s>
                  <s xml:id="echoid-s4046" xml:space="preserve">ſit etiam centrum
                    <lb/>
                  vnius circuli, cuius diameter ſit
                    <reg norm="idem" type="context">idẽ</reg>
                    <reg norm="cum" type="context">cũ</reg>
                  maiori axe
                    <var>.d.p.</var>
                  & in gyro oxygoniæ accipia-
                    <lb/>
                  tur punctum
                    <var>.f.</var>
                  proximum
                    <var>.b.</var>
                  quantum fieri poterit, </s>
                  <s xml:id="echoid-s4047" xml:space="preserve">tunc protrahatur
                    <var>.f.a.e.</var>
                  parallela
                    <lb/>
                  ipſi
                    <var>.g.c.</var>
                  vſque ad gyrum maioris circuli in puncto
                    <var>.e.</var>
                  quæ cum
                    <var>.d.p.</var>
                  rectos efficiec
                    <lb/>
                  angulos. ex .29. primi Eucli. </s>
                  <s xml:id="echoid-s4048" xml:space="preserve">
                    <reg norm="ſecabitque" type="simple">ſecabitq́;</reg>
                  gyrum circuli
                    <var>.b.o.</var>
                  minoris in puncto
                    <var>.t.</var>
                  quod di
                    <lb/>
                  co eſſe intra oxygoniam,
                    <reg norm="ſeparatumque" type="simple">ſeparatumq́;</reg>
                  ab
                    <var>.f</var>
                  . </s>
                  <s xml:id="echoid-s4049" xml:space="preserve">Quapropter duco
                    <var>.c.e.</var>
                  quæ ſecabit cir-
                    <lb/>
                  cunferentiam circuli minoris in
                    <reg norm="puncto" type="context">pũcto</reg>
                    <var>.o.</var>
                  à quo puncto duco etiam
                    <var>.o.i.</var>
                  parallelam ad
                    <lb/>
                    <var>e.a</var>
                  . </s>
                  <s xml:id="echoid-s4050" xml:space="preserve">Deinde conſidero, quod ex ra-
                    <lb/>
                  tionibus ab Archimede adductis in
                    <lb/>
                    <figure xlink:label="fig-0346-01" xlink:href="fig-0346-01a" number="373">
                      <image file="0346-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0346-01"/>
                    </figure>
                  quinta propoſitione libri de conoi-
                    <lb/>
                  dalibus, & ſphæroidibus, eadem
                    <lb/>
                  proportio erit
                    <reg norm="ipſius" type="simple">ipſiꝰ</reg>
                    <var>.g.c.</var>
                  ad
                    <var>.b.c.</var>
                  quę
                    <lb/>
                  ipſius
                    <var>.e.a.</var>
                  ad
                    <var>.f.a.</var>
                  vnde permutando
                    <lb/>
                  ita erit ipſius
                    <var>.g.c.</var>
                  ad
                    <var>.e.a.</var>
                  vel
                    <var>.b.c.</var>
                  ad
                    <lb/>
                    <var>f.a.</var>
                  hoc eſt ipſius
                    <var>.e.c.</var>
                  ad
                    <var>.e.a.</var>
                  vt
                    <var>.o.c.</var>
                    <lb/>
                  ad
                    <var>.f.a.</var>
                  ſed ex ſimilitudine triangu-
                    <lb/>
                  lorum, & ex .11. quinti, ita
                    <reg norm="etiam" type="context">etiã</reg>
                  erit
                    <lb/>
                  ipſius
                    <var>.o.c.</var>
                  ad
                    <var>.o.i.</var>
                  vt
                    <var>.o.c.</var>
                  ad
                    <var>.f.a</var>
                  . </s>
                  <s xml:id="echoid-s4051" xml:space="preserve">Vn-
                    <lb/>
                  de ſequitur
                    <var>.o.i.</var>
                  æqualem eſſe
                    <var>.f.a.</var>
                    <lb/>
                  ſed ex .14. tertij Eucli
                    <var>.t.a.</var>
                  minor eſt
                    <var>.
                      <lb/>
                    o.i</var>
                  . </s>
                  <s xml:id="echoid-s4052" xml:space="preserve">Quare minor etiam erit ipſa
                    <var>.f.
                      <lb/>
                    a</var>
                  . </s>
                  <s xml:id="echoid-s4053" xml:space="preserve">Vnde punctum
                    <var>.t.</var>
                  intra oxygo-
                    <lb/>
                  niam erit, & conſequenter ſepara-
                    <lb/>
                  tum .ab
                    <var>.f</var>
                  .</s>
                </p>
                <p>
                  <s xml:id="echoid-s4054" xml:space="preserve">Sed ſi centrum circuli minoris
                    <lb/>
                  fuerit inter
                    <var>.c.</var>
                  et
                    <var>.b.</var>
                  hoc eſt eccentri-
                    <lb/>
                  cum ipſius oxygoniæ, ipſe tanget concentricum in puncto
                    <var>.b.</var>
                  tantummodò, vt in .3.
                    <lb/>
                  Euclidis libro probatur. </s>
                  <s xml:id="echoid-s4055" xml:space="preserve">Vnde tanto magis diſtans erit punctum
                    <var>.t.</var>
                  à puncto
                    <var>.f.</var>
                  quod
                    <lb/>
                  erit propoſitum.</s>
                </p>
              </div>
              <div xml:id="echoid-div650" type="letter" level="4" n="3">
                <head xml:id="echoid-head499" style="it" xml:space="preserve">Alterius dubitationis ſolutio.</head>
                <head xml:id="echoid-head500" xml:space="preserve">AD EVNDEM.</head>
                <p>
                  <s xml:id="echoid-s4056" xml:space="preserve">VNde autem fiat, quod à ſpeculis planis, obiectorum imagines, ita diſtantes
                    <lb/>
                  vltra ſuperficiem ipſius ſpeculi videantur, vt obiecta citra ipſam ſuperficiem
                    <lb/>
                  reperiuntur.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4057" xml:space="preserve">Pro cuius rei ſcientia, tres cognitiones nos primum habere oportet, quarum pri-
                    <lb/>
                  ma eſt. </s>
                  <s xml:id="echoid-s4058" xml:space="preserve">Vnde fiat, quod obiecti imago in catheto incidentiæ videatur. </s>
                  <s xml:id="echoid-s4059" xml:space="preserve">
                    <reg norm="Secunda" type="context">Secũda</reg>
                  . </s>
                  <s xml:id="echoid-s4060" xml:space="preserve">vn-
                    <lb/>
                  de efficiatur, quod angulus reflexionis, ſemper æqualis ſit angulo incidentiæ.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4061" xml:space="preserve">Terria demum. </s>
                  <s xml:id="echoid-s4062" xml:space="preserve">Vnde naſcatur quod radius incidentiæ ſimul cum radio reflexio-
                    <lb/>
                  nis ſit in quodam plano ſecante ſuperficiem ſpeculi ſemper ad rectos, quod qui-
                    <lb/>
                  dem planum vocatur ſuperficies reflexionis. </s>
                  <s xml:id="echoid-s4063" xml:space="preserve">Huiuſmodi tres paſſiones, ab omnibus
                    <lb/>
                  ſpecularijs conſideratæ ſunt, ſed rationes ab illis traditæ, mihi non ſatisfaciunt.</s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>