Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
311 299
312 300
313 301
314 302
315 303
316 304
317 305
318 306
319 307
320 308
321 309
322 310
323 311
324 312
325 313
326 314
327 315
328 316
329 317
330 318
331 319
332 320
333 321
334 322
335 323
336 324
337 325
338 326
339 327
340 328
< >
page |< < (336) of 445 > >|
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div642" type="section" level="3" n="28">
              <div xml:id="echoid-div650" type="letter" level="4" n="3">
                <pb o="336" rhead="IO. BAPT. BENED." n="348" file="0348" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0348"/>
                <p>
                  <s xml:id="echoid-s4079" xml:space="preserve">Animal igitur, ſecundum diſtantiam obiecti, oculum accommodat ad recipien-
                    <lb/>
                  dum quam exactiſſimè ſpeciem ipſius obiecti, & hoc voluendo ambos oculos, vnum
                    <lb/>
                  verſus alium, ita quod interſectio axium ſit in ſitu ſeu loco dicti obiecti, nam tunc vi
                    <lb/>
                  dent ambo vel aliquis eorum ſolus, in tali diſtantia exactè obiectum videbit.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4080" xml:space="preserve">Vnde ſequitur obiectum viſibile, compræhenſibile non eſſe ab vno tantummodo
                    <lb/>
                  oculo in quolibet ſitu axis ipſius oculi, ſed in eo, vbi alius axis interſecatur à dicto.
                    <lb/>
                  </s>
                  <s xml:id="echoid-s4081" xml:space="preserve">Quæ quidem interſectio poteſt fieri propinqua, vel remota à viſu, ad certos tamen
                    <lb/>
                  terminos vſque.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4082" xml:space="preserve">De huiuſmodi axium viſualium interſectione ſcribit Alhazem in .2. et .15. propo
                    <lb/>
                  ſitione tertij lib. Vitellio verò in .32. et .45. eiuſdem.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4083" xml:space="preserve">Quod igitur dico, verum eſt, ideſt, quod ſi vno tantummodo oculo aſpiciemus
                    <lb/>
                  obiectum aliquod, ipſum nunquam perfectè proſpicietur, niſi cum oculus ita ſitus
                    <lb/>
                  fuerit, vt eius axis cum axe alterius in loco obiecti ſe inuicem ſecent, quamuis alter
                    <lb/>
                  oculus nihil videat,
                    <reg norm="cum" type="context">cũ</reg>
                    <reg norm="autem" type="wordlist">aũt</reg>
                  duobus oculis in tali ſitu
                    <reg norm="conſtitutis" type="context">cõſtitutis</reg>
                    <reg norm="obiectum" type="context">obiectũ</reg>
                  videmus, vnum
                    <lb/>
                  tantummodo nobis cernere videbimur, & ſi extra talem punctum interſectionis ip-
                    <lb/>
                  ſum obiectum poſitum fuerit, tunc duo talia, obiecta nobis apparebunt, ſed huiuſ
                    <lb/>
                  modi rei cauſam alias tibi manifeſtabo.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4084" xml:space="preserve">His igitur cognitis, ponamus aliquam
                    <lb/>
                    <figure xlink:label="fig-0348-01" xlink:href="fig-0348-01a" number="375">
                      <image file="0348-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0348-01"/>
                    </figure>
                  ſpeculi ſuperficiem eſſe
                    <var>.g.h.</var>
                  in figura
                    <var>.B.</var>
                    <lb/>
                  obiectum autem viſibile
                    <var>.b.</var>
                  oculos vero
                    <var>.a.</var>
                    <lb/>
                  et
                    <var>.u.</var>
                  punctum autem
                    <var>.n.</var>
                  in ſuperficie ſpecu
                    <lb/>
                  li, à quo imago ipſius
                    <var>.b.</var>
                  reflectit ad
                    <var>.a.</var>
                  &
                    <lb/>
                  punctum
                    <var>.t.</var>
                  à quo reflectitur ad
                    <var>.u.</var>
                  et
                    <var>.c.e.</var>
                    <lb/>
                  ſit
                    <reg norm="communis" type="context">cõmunis</reg>
                  ſectio ſuperficiei reflexionis
                    <lb/>
                  radiorum
                    <var>.b.n.a.</var>
                  et
                    <var>.c.f.</var>
                  ſit communis ſectio
                    <lb/>
                  ſuperficiei reflexionis radiorum
                    <var>.b.t.u.</var>
                  qua
                    <lb/>
                  rum
                    <reg norm="vnaquæque" type="simple">vnaquæq;</reg>
                  ſuperficies reflexionis, ere-
                    <lb/>
                  cta eſt ad ſuperficiem ſpeculi
                    <var>.g.h.</var>
                  vt ſupra
                    <lb/>
                  diximus. </s>
                  <s xml:id="echoid-s4085" xml:space="preserve">Nunc ex .19. vndecimi Eucl. ſequitur communem ſectionem harum dua-
                    <lb/>
                  rum ſuperficierum. (b.c.d. ſcilicet) ad rectos etiam eſſe ſupra ſuperficiem ſpeculi
                    <var>.g.
                      <lb/>
                    h.</var>
                  cum qua
                    <var>.b.c.</var>
                  quælibet linearum
                    <var>.a.n.</var>
                  vel
                    <var>.u.t.</var>
                  reflexarum ( productę cum fuerint )
                    <lb/>
                  ſeinuicem interſecabunt eo quod duo anguli
                    <var>.d.c.n.</var>
                  et
                    <var>.d.n.c.</var>
                  ſimul collecti minores
                    <lb/>
                  ſunt duobus rectis, & ita
                    <var>.d.c.t.</var>
                  cum
                    <var>.d.t.c.</var>
                  cum anguli
                    <var>.a.n.e.</var>
                  et
                    <var>.u.t.f.</var>
                  reflexi, ipſis con-
                    <lb/>
                  trapoſiti, æquales ſint angulis
                    <var>.b.n.c.</var>
                  et
                    <var>.b.t.c.</var>
                  incidentiæ, quorum
                    <reg norm="vnuſquiſque" type="simple">vnuſquiſq;</reg>
                  ex .32.
                    <lb/>
                  primi, minor eſt recto.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4086" xml:space="preserve">Dico etiam quod in eodem puncto huiuſmodi catheti
                    <var>.b.c.d.</var>
                  in quo interſecabi-
                    <lb/>
                  tur à linea
                    <var>.a.n.</var>
                  in eodem ſecabitur à linea
                    <var>.u.t.</var>
                  & quod punctum dicti concurſus, tan-
                    <lb/>
                  tum depreſſum erit ſub ſuperficie ſpeculi
                    <var>.g.h.</var>
                  quantum
                    <var>.b.</var>
                  ſupra ipſam reperietur.
                    <lb/>
                  </s>
                  <s xml:id="echoid-s4087" xml:space="preserve">Nam anguli
                    <var>.b.n.c.</var>
                  et
                    <var>.d.n.c.</var>
                  ſunt inuicem æquales,
                    <reg norm="angulique" type="simple">anguliq́;</reg>
                    <var>.b.c.n.</var>
                  et
                    <var>.d.c.n.</var>
                  recti
                    <var>.c.n.</var>
                    <lb/>
                  verò communis ambobus triangulis
                    <var>.b.c.n.</var>
                  et
                    <var>.d.c.n.</var>
                  vnde ex .26. primi Eucli. latus
                    <var>.d.
                      <lb/>
                    c.</var>
                  commune, vt trianguli
                    <var>.d.c.n.</var>
                  æquale erit lateri communi
                    <var>.b.c.</var>
                  vt trianguli
                    <var>.b.c.n.</var>
                    <lb/>
                  Idem etiam dico de latere
                    <var>.d.c.</var>
                  vt ipſius trianguli
                    <var>.d.c.t.</var>
                  quod æquatur lateri
                    <var>.b.c.</var>
                  vt
                    <lb/>
                  trianguli
                    <var>.b.c.t</var>
                  . </s>
                  <s xml:id="echoid-s4088" xml:space="preserve">Vnde cum
                    <var>.b.c.</var>
                  vnum, & idem ſit: </s>
                  <s xml:id="echoid-s4089" xml:space="preserve">d.c. igitur etiam erit, & ipſum
                    <reg norm="vnum" type="context">vnũ</reg>
                    <lb/>
                  & idem, quod erit propoſitum.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4090" xml:space="preserve">Nunc autem cum hi duo radij ſeinuicem ſecent in puncto
                    <var>.d.</var>
                  ergo in ipſo puncto
                    <var>.
                      <lb/>
                    d.</var>
                  videbimur nobis videre
                    <reg norm="imaginem" type="context">imaginẽ</reg>
                  obiecti .b:
                    <reg norm="cum" type="context">cũ</reg>
                  ope
                    <reg norm="duorum" type="context">duorũ</reg>
                    <reg norm="iſtorum" type="context">iſtorũ</reg>
                    <reg norm="radiorum" type="context">radiorũ</reg>
                    <var>.n.a.</var>
                  et
                    <var>.t.
                      <lb/>
                    u.</var>
                  ita inuicem
                    <reg norm="ſitorum" type="context">ſitorũ</reg>
                  , videamur nobis
                    <reg norm="imaginem" type="context">imaginẽ</reg>
                  proſpicere. </s>
                  <s xml:id="echoid-s4091" xml:space="preserve">Vnde ſi in tali caſu, vnus </s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>