Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
371 359
372 360
373 361
374 362
375 363
376 364
377 365
378 366
379 367
380 368
381 369
382 370
383 371
384 372
385 373
386 374
387 375
388 376
389 377
390 378
391 379
392 380
393 381
394 382
395 383
396 384
397 385
398 386
399 387
400 388
< >
page |< < (338) of 445 > >|
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div642" type="section" level="3" n="28">
              <div xml:id="echoid-div650" type="letter" level="4" n="3">
                <p>
                  <s xml:id="echoid-s4103" xml:space="preserve">
                    <pb o="338" rhead="IO. BAPT. BENED." n="350" file="0350" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0350"/>
                  clarum erit ex rationibus ſupradictis nos ipſam videre in
                    <reg norm="communi" type="context">cõmuni</reg>
                  concurſu ipſorum
                    <lb/>
                  axium viſualium, qui axes cum reperiantur vnà cum ipſis radijs reflexis
                    <var>.n.a.</var>
                  et
                    <var>.t.u.</var>
                    <lb/>
                  ex neceſſitate ſeinuicem
                    <reg norm="ſecabunt" type="context">ſecabũt</reg>
                  in catheto
                    <var>.b.c.</var>
                  cum extendantur in ipſis ſuperficie-
                    <lb/>
                  bus reflexionum, quæ ſuperficies nihil aliud commune inuicem habent, quam cathe
                    <lb/>
                  tum dictum
                    <var>.b.c.</var>
                  ſit igitur in puncto
                    <var>.d</var>
                  .</s>
                </p>
                <p>
                  <s xml:id="echoid-s4104" xml:space="preserve">Ex his dictis alia oritur neceſſitas, hoc eſt, quod quotieſcunque vnam tantummo
                    <lb/>
                  do imaginem obiecti
                    <var>.b.</var>
                  videmus, dato quod duæ ſuperficies reflexionis ſint, & non
                    <lb/>
                  vna tantum, tunc angulos
                    <var>.n.</var>
                  et
                    <var>.t.</var>
                  ſemper inuicem æquales eſſe oportebit. </s>
                  <s xml:id="echoid-s4105" xml:space="preserve">Vnde ar-
                    <lb/>
                  cus
                    <var>.n.c.</var>
                  et
                    <var>.t.c.</var>
                  ex neceſſitate inuicem æquales erunt.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4106" xml:space="preserve">Scimas enim ex .3. ſexti Euclid. quod eadem proportio erit ipſius
                    <var>.b.n.</var>
                  ad
                    <var>.n.
                      <lb/>
                    d.</var>
                  quę ipſius
                    <var>.b.x.</var>
                  ad
                    <var>.x.d.</var>
                  & ipſius
                    <var>.b.t.</var>
                  ad
                    <var>.t.d.</var>
                  ſimiliter, </s>
                  <s xml:id="echoid-s4107" xml:space="preserve">quare ipſiusb
                    <var>.n.</var>
                  ad
                    <var>.n.
                      <lb/>
                    d.</var>
                  erit vt ipſius
                    <var>.b.t.</var>
                  ad
                    <var>.t.d</var>
                  . </s>
                  <s xml:id="echoid-s4108" xml:space="preserve">Vnde ſequitur
                    <var>.b.n.</var>
                  æqualem eſſe ipſi
                    <var>.b.t.</var>
                  et
                    <var>.n.d.</var>
                    <lb/>
                  ipſi
                    <var>.t.d.</var>
                  vt à medio circulo
                    <var>.E.</var>
                  potes videre, quamuis etiam
                    <var>.b.</var>
                  non eſſet extremum
                    <lb/>
                  diametri, ſed vbicunque volueris in ipſo diametro, vel
                    <reg norm="etiam" type="context">etiã</reg>
                  protracta, eo quod pun-
                    <lb/>
                  ctum
                    <var>.n.</var>
                  & punctum
                    <var>.t.</var>
                  in eodem ſemicirculo, vel in æqualibus ſemicirculis, non
                    <reg norm="poſsent" type="context">poſsẽt</reg>
                    <lb/>
                  aliter in ipſa circunferentia locari,
                    <reg norm="eandem" type="context">eãdem</reg>
                  ſeruando proportionem
                    <var>.b.n.</var>
                  ad
                    <var>.n.d.</var>
                  vt
                    <var>.b.
                      <lb/>
                    t.</var>
                  ad
                    <var>.t.d.</var>
                  </s>
                  <s xml:id="echoid-s4109" xml:space="preserve">propterea quod in omni alio ſitu exiſtente puncto
                    <var>.t.</var>
                  ipſa
                    <var>.b.t.</var>
                  eſſet aut maior
                    <lb/>
                  aut minor ipſa
                    <var>.b.n.</var>
                  et
                    <var>.t.d.</var>
                  aut minor, aut maior ipſa
                    <var>.t.d.</var>
                  ex .7. & 14. tertij Eucli. </s>
                  <s xml:id="echoid-s4110" xml:space="preserve">vnde
                    <lb/>
                  aut maior, aut minor proportio eſſet ipſius
                    <var>.b.t.</var>
                  ad
                    <var>.t.d.</var>
                  quam ipſius
                    <var>.b.n.</var>
                  ad
                    <var>.n.d.</var>
                  & non
                    <lb/>
                  eadem.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4111" xml:space="preserve">Nunc è conuerſo ſi
                    <var>.b.n.</var>
                  et
                    <var>.b.t.</var>
                  ſunt ſibi inuicem æquales, & ſic
                    <var>.n.d.</var>
                  cum
                    <var>.t.d.</var>
                  ſequi-
                    <lb/>
                  tur ex .8. primi Eucli. angulos
                    <var>.n.</var>
                  et
                    <var>.t.</var>
                  inuicem æquales eſſe.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4112" xml:space="preserve">Ab ijſdem ſpeculationibus potes etiam videre vnde accidat quod partes ſuperio
                    <lb/>
                  res alicuius obiecti reflexæ à tali ſpeculo concauo videntur nobis inferiores eſſe, &
                    <lb/>
                  inferiores appareant ſuperiores, & dextræ ſiniſtræ, & ſiniſtræ dextræ. </s>
                  <s xml:id="echoid-s4113" xml:space="preserve">quod autem
                    <lb/>
                  hucuſque demonſtraui de ſpeculis planis, & ſphæricis concauis, ratiocinare tu ijſdem
                    <lb/>
                  medijs circa ſphærica conuexa, vbi clarè videbis puncta huiuſmodi ſpeculi conuexi,
                    <lb/>
                  à quibus reflectitur imago obiecti ad ambos oculos, ſemper oportere æquidiſtantia
                    <lb/>
                  eſſe à
                    <reg norm="puncto" type="context">pũcto</reg>
                  communi ipſius ſuperficiei ſpeculi, & catheto incidentiæ, dum unam tan
                    <lb/>
                  tummodo imaginem ipſius obiecti videmus, & à diuerſis ſuperficiebus reflexionum.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4114" xml:space="preserve">Nolo etiam prætermittere, quod nunc mihi ſuccurrit, hoc eſt quod poſſet ali-
                    <lb/>
                  quis duos ſitus inuenire, vnum pro oculo, alterum verò pro obiecto, reſpectu alicu-
                    <lb/>
                  ius ſpeculi concaui, ſphęroidis prolatæ, vt reflexio ipſius obiecti videretur, vt linea
                    <lb/>
                  diuidens per æqualia ipſum ſpeculum. </s>
                  <s xml:id="echoid-s4115" xml:space="preserve">Reſpectu verò alicuius ſpeculi concaui ſphæ-
                    <lb/>
                  roidis oblongæ, vt reflexio obiecti ad oculum veniret à tota ſuperficie ipſius ſpecu-
                    <lb/>
                  li, vnde tota ſuperficies ipſius ſpeculi videretur colorata illo colore cuius eſſet
                    <lb/>
                  obiectum, quæ quidem paſſiones
                    <reg norm="pendent" type="context">pendẽt</reg>
                  à .48. tertij lib. ipſius Pergei, vt ex te ipſo fa
                    <lb/>
                  cile videre potes, propter æqualitatem angulorum reflexionis, & incidentiæ.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4116" xml:space="preserve">Opinio autem mea, quam ſcire cupis de imagine obiecti reflexa, quam putas eſ-
                    <lb/>
                  ſe in ſuperficie ſpeculi, hæc eſt, quod nec in ſuperficie, nec ultra, nec citra eam eſt ip
                    <lb/>
                  ſa imago, quod autem vltra non ſit, hoc puto nulli dubium eſſe. </s>
                  <s xml:id="echoid-s4117" xml:space="preserve">eadem etiam ra-
                    <lb/>
                  tione non erit citra ſuperficiem ſpeculi concaui, quamuis ipſam nos compræhenda-
                    <lb/>
                  mus in concurſu radiorum viſualium, tam ab vno ſpeculo quam ab alio reflexione
                    <lb/>
                  facta. </s>
                  <s xml:id="echoid-s4118" xml:space="preserve">Sed quòd ipſa neque ſit in ipſa ſpeculi ſuperficie, manifeſtum erit ex hoc,
                    <reg norm="quod" type="simple">ꝙ</reg>
                    <lb/>
                  duo ſpectantes in eodem ſpeculo, duas diuerſas imagines vident, tres,
                    <reg norm="autem" type="wordlist">aũt</reg>
                  tres, qua-
                    <lb/>
                  tuor, quatuor, & ſic deinceps, vnde tot eſſent imagines ſupra ſuperficiem ſpeculi,
                    <lb/>
                  quot obiecta,
                    <reg norm="quod" type="simple">ꝙ</reg>
                  tamen ita non eſt, nec plus eſt in vno loco ipſa imago, quam in alio, </s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>